Regulatory Compliance

Thermo Fisher Scientific performs complete testing and evaluation of its products to ensure full compliance with applicable domestic and international regulations. When the system is delivered to you, it meets all pertinent electromagnetic compatibility (EMC) and safety standards as described in the next section or sections by product name.

Changes that you make to your system may void compliance with one or more of these EMC and safety standards. Changes to your system include replacing a part or adding components, options, or peripherals not specifically authorized and qualified by Thermo Fisher Scientific. To ensure continued compliance with EMC and safety standards, replacement parts and additional components, options, and peripherals must be ordered from Thermo Fisher Scientific or one of its authorized representatives.

TSQ Quantum XLS (not reviewed)

EMC compliance has been evaluated by TUV Rheinland of North America Inc.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61000-3-3</td>
<td>1998, 2001</td>
</tr>
<tr>
<td>EN 61000-4-2</td>
<td>2001</td>
</tr>
<tr>
<td>EN 61000-4-3</td>
<td>2002</td>
</tr>
<tr>
<td>EN 61000-4-4</td>
<td>1995, A1; 2000, A2; 2001</td>
</tr>
<tr>
<td>EN 61000-4-5</td>
<td>1995, A1; 2001</td>
</tr>
<tr>
<td>EN 61000-4-6</td>
<td>1996, A1; 2003</td>
</tr>
<tr>
<td>EN 61000-4-11</td>
<td>1994, A1; 2001</td>
</tr>
<tr>
<td>CISPR 11</td>
<td>1998</td>
</tr>
</tbody>
</table>

FCC Class A, CFR 47 Part 15

EMC compliance has been evaluated by TUV Rheinland of North America Inc.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Year(s)</th>
<th>Standard</th>
<th>Year(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61000-4-2</td>
<td>2001</td>
<td>EN 61000-4-11</td>
<td>1994, A1; 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CISPR 11</td>
<td>1998</td>
</tr>
</tbody>
</table>

FCC Class A, CFR 47 Part 15

Low Voltage Safety Compliance

Changes that you make to your system may void compliance with one or more of these EMC and safety standards. Changes to your system include replacing a part or adding components, options, or peripherals not specifically authorized and qualified by Thermo Fisher Scientific. To ensure continued compliance with EMC and safety standards, replacement parts and additional components, options, and peripherals must be ordered from Thermo Fisher Scientific or one of its authorized representatives.

FCC Compliance Statement

THIS DEVICE COMPLIES WITH PART 15 OF THE FCC RULES. OPERATION IS SUBJECT TO THE FOLLOWING TWO CONDITIONS: (1) THIS DEVICE MAY NOT CAUSE HARMFUL INTERFERENCE, AND (2) THIS DEVICE MUST ACCEPT ANY INTERFERENCE RECEIVED, INCLUDING INTERFERENCE THAT MAY CAUSE UNDESIRED OPERATION.

CAUTION Read and understand the various precautionary notes, signs, and symbols contained inside this manual pertaining to the safe use and operation of this product before using the device.
Notice on Lifting and Handling of Thermo Fisher Scientific San Jose Instruments

For your safety, and in compliance with international regulations, the physical handling of this Thermo Fisher Scientific San Jose instrument requires a team effort to lift and/or move the instrument. This instrument is too heavy and/or bulky for one person alone to handle safely.

Notice on the Proper Use of Thermo Fisher Scientific San Jose Instruments

In compliance with international regulations: Use of this instrument in a manner not specified by Thermo Fisher Scientific San Jose could impair any protection provided by the instrument.

Notice on the Susceptibility to Electromagnetic Transmissions

Your instrument is designed to work in a controlled electromagnetic environment. Do not use radio frequency transmitters, such as mobile phones, in close proximity to the instrument.
WEEE Compliance

This product is required to comply with the European Union's Waste Electrical & Electronic Equipment (WEEE) Directive 2002/96/EC. It is marked with the following symbol:

Thermo Fisher Scientific has contracted with one or more recycling or disposal companies in each European Union (EU) Member State, and these companies should dispose of or recycle this product. See www.thermo.com/WEEERoHS for further information on Thermo Fisher Scientific's compliance with these Directives and the recyclers in your country.

WEEE Konformität

Dieses Produkt muss die EU Waste Electrical & Electronic Equipment (WEEE) Richtlinie 2002/96/EC erfüllen. Das Produkt ist durch folgendes Symbol gekennzeichnet:

Thermo Fisher Scientific hat Vereinbarungen mit Verwertungs-/Entsorgungsfirmen in allen EU-Mitgliedsstaaten getroffen, damit dieses Produkt durch diese Firmen wiederverwertet oder entsorgt werden kann. Mehr Information über die Einhaltung dieser Anweisungen durch Thermo Fisher Scientific, über die Verwerter, und weitere Hinweise, die nützlich sind, um die Produkte zu identifizieren, die unter diese RoHS Anweisung fallen, finden sie unter www.thermo.com/WEEERoHS.
Conformité DEEE

Ce produit doit être conforme à la directive européenne (2002/96/EC) des Déchets d’Equipements Electriques et Electroniques (DEEE). Il est marqué par le symbole suivant:

Prodotti chimici. Sostanze chimiche pericolose

Shock da folgorazione. L'apparecchio è

Química: El instrumento puede contener productos químicos peligrosos. Utilice guantes al manejar productos químicos

Allgemeine Gefahr: Es besteht eine weitere Gefahr, die nicht in den vorstehenden Kategorien beschrieben ist. Dieses Symbol wird im Handbuch außerdem dazu verwendet, um den Benutzer auf Anweisungen hinzuweisen.

Allgemeine Gefahr: Es besteht eine weitere Gefahr, die nicht in den vorstehenden Kategorien beschrieben ist. Dieses Symbol wird im Handbuch außerdem dazu verwendet, um den Benutzer auf Anweisungen hinzuweisen.

Choc électrique: L'instrument utilise des tensions capables d'infliger des blessures corpelles. L'instrument doit être arrêté et débranché de la source de courant avant tout intervention. Ne pas utiliser l'instrument sans son couvercle. Ne pas
elever les étuis protecteurs des cartes de circuits imprimés.

Choc électrique: L'instrument utilise des tensions capables d'infliger des blessures corpelles. L'instrument doit être arrêté et débranché de la source de courant avant tout intervention. Ne pas utiliser l'instrument sans son couvercle. Ne pas
elever les étuis protecteurs des cartes de circuits imprimés.

Descarga eléctrica: Este instrumento utiliza altas tensiones, capaces de producir lesiones personales. Antes de dar servicio de mantenimiento al instrumento, éste debea apagarse y desconectarse de la línea de alimentacion eléctrica. No opere el instrumento sin sus cubiertas exteriores quitadas. No remueva las cubiertas protectoras de las tarjetas de circuito imprimido.

Descarga eléctrica: Este instrumento utiliza altas tensiones, capaces de producir lesiones personales. Antes de dar servicio de mantenimiento al instrumento, éste debea apagarse y desconectarse de la línea de alimentacion eléctrica. No opere el instrumento sin sus cubiertas exteriores quitadas. No remueva las cubiertas protectoras de las tarjetas de circuito imprimido.

Sunergy non incluido en las categorias anteriores. Este simbolo tambien se utiliza

Eletroshock: This instrument uses high voltages that can cause personal injury. Before servicing, shut down the instrument and disconnect the instrument from line power. Keep the top cover on while operating the instrument. Do not remove protective covers from PCBs.

Chemical: This instrument might contain hazardous chemicals. Wear gloves when handling toxic, carcinogenic, mutagenic, or corrosive or irritant chemicals. Use approved containers and proper procedures to dispose waste oil.

Chemical: This instrument might contain hazardous chemicals. Wear gloves when handling toxic, carcinogenic, mutagenic, or corrosive or irritant chemicals. Use approved containers and proper procedures to dispose waste oil.

Calcio: Attendere i componenti
deshacerse del aceite usado.

Calcio: Attendere i componenti
deshacerse del aceite usado.

Incendio: Adottare le dovute precauzioni quando si usa il sistema in presenza di gas infiammabili.

Incendio: Adottare le dovute precauzioni quando si usa il sistema in presenza di gas infiammabili.

General Hazard: A hazard is present that is not included in the above categories. Also, this symbol appears on the instrument to refer the user to instructions in this manual.

General Hazard: A hazard is present that is not included in the above categories. Also, this symbol appears on the instrument to refer the user to instructions in this manual.

Cuando la sûreté d’un procédure est incertaine, avant de continuer, contacter le plus proche Service Clientèle pour les produits de Thermo Fisher Scientific San Jose.

Cuando la sûreté d’un procédure est incertaine, avant de continuer, contacter le plus proche Service Clientèle pour les produits de Thermo Fisher Scientific San Jose.

Pericolo per la vista. Gli schizzi di prodotti chimici o delle particelle presenti nell’aria potrebbero causare danni alla vista. Indossare occhiali protettivi quando si maneggi neuralmente prodotti chimici o si effettuano interventi di manutenzione sull’apparecchio.

Pericolo per la vista. Gli schizzi di prodotti chimici o delle particelle presenti nell’aria potrebbero causare danni alla vista. Indossare occhiali protettivi quando si maneggi neuralmente prodotti chimici o si effettuano interventi di manutenzione sull’apparecchio.

Eye Hazard: Eye damage could occur from splattered chemicals or flying particles. Wear safety glasses when handling chemicals or servicing the instrument.

Eye Hazard: Eye damage could occur from splattered chemicals or flying particles. Wear safety glasses when handling chemicals or servicing the instrument.

Eye Hazard: Eye damage could occur from splattered chemicals or flying particles. Wear safety glasses when handling chemicals or servicing the instrument.

Allgemeine Gefahr: Es besteht eine weitere Gefahr, die nicht in den vorstehenden Kategorien beschrieben ist. Dieses Symbol wird im Handbuch außerdem dazu verwendet, um den Benutzer auf Anweisungen hinzuweisen.

Allgemeine Gefahr: Es besteht eine weitere Gefahr, die nicht in den vorstehenden Kategorien beschrieben ist. Dieses Symbol wird im Handbuch außerdem dazu verwendet, um den Benutzer auf Anweisungen hinzuweisen.

When the safety of a procedure is questionable, contact your local Technical Support organization for Thermo Fisher Scientific San Jose Products.
<table>
<thead>
<tr>
<th>CAUTION Symbol</th>
<th>CAUTION</th>
<th>危険警告</th>
<th>危険警告</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electric Shock: This instrument uses high voltages that can cause personal injury. Before servicing, shut down the instrument and disconnect the instrument from line power. Keep the top cover on while operating the instrument. Do not remove protective covers from PCBs.</td>
<td>電撃：この計測器は高電圧を使用し、人体に危害を与える可能性があります。保守・修理は、必ず機器を停止し、電源を切ってから実施して下さい。上部カバーを外さないで計測器を使用しないで下さい。サプライリカバーは外さないで下さい。</td>
<td>電撃：儀器設備使用中に人體に傷害が付与する高電圧。維修前、必ず機器を停止し、電源を切ってから実施して下さい。上部カバーを外さないで計測器を使用しないで下さい。サプライリカバーは外さないで下さい。</td>
</tr>
<tr>
<td></td>
<td>Chemical: This instrument might contain hazardous chemicals. Wear gloves when handling toxic, carcinogenic, mutagenic, or corrosive or irritant chemicals. Use approved containers and proper procedures to dispose waste oil.</td>
<td>化学物質：潜在的な化学物質が計測器中に存在している可能性があります。毒性、発がん性、変異原性、腐食性・刺激性などの化学物質を扱う際は、手袋着用を確認して下さい。廃油処理には、指定の容器と手順を使用して下さい。</td>
<td>化学物質：儀器設備中に潜在的な化学物質が存在する可能性があります。毒性、発がん性、変異原性、腐食性・刺激性化学物質を扱う際は、手袋着用を確認して下さい。廃油処理には、指定の容器と手順を使用して下さい。</td>
</tr>
<tr>
<td></td>
<td>Heat: Before servicing the instrument, allow any heated components to cool.</td>
<td>熱：熟した部品は冷えるのを待ってから保守・修理を行って下さい。</td>
<td>高温：温度が高くなるまで冷却してから再び維修を行います。</td>
</tr>
<tr>
<td></td>
<td>Fire: Use care when operating the system in the presence of flammable gases.</td>
<td>火災：可燃性ガスが存在する場所でシステムを操作する場合は、充分な注意を払って下さい。</td>
<td>火災：有機溶剤が存在する場所でシステムを操作する場合は、十分な注意を払って下さい。</td>
</tr>
<tr>
<td></td>
<td>Eye Hazard: Eye damage could occur from splattered chemicals or flying particles. Wear safety glasses when handling chemicals or servicing the instrument.</td>
<td>眼に対する危険：化学物質や微粒物が飛散して眼を傷つける危険性があります。化学物質の取り扱い、あるいは計測器の保守・修理においては、防護眼鏡を着用して下さい。</td>
<td>眼睛傷害危険：飛散する化学物質や微粒物が眼を傷つける可能性があります。化学物質の取り扱い、あるいは計測器の保守・修理においては、防護眼鏡を着用して下さい。</td>
</tr>
<tr>
<td></td>
<td>General Hazard: A hazard is present that is not included in the above categories. Also, this symbol appears on the instrument to refer the user to instructions in this manual.</td>
<td>一般的な危険：この標識は、上記以外のタイプの危険が存在することを示します。また、計測器にこの標識がついている場合は、本マニュアル中の指示を参照して下さい。</td>
<td>一般性危険：説明書に記載されていない他の危険。また、儀器設備上に設置している標識は指示に従ってください。</td>
</tr>
</tbody>
</table>

When the safety of a procedure is questionable, contact your local Technical Support organization for Thermo Fisher Scientific San Jose Products.
Contents

Preface	..	v
Safety and Special Notices	...	v
Safety Precautions	..	vii
Solvent and Gas Purity Requirements	..	viii
Service Philosophy	..	viii
Level of Repair	..	viii
Contacting Us	..	ix

Chapter 1 Introduction .. 1

- Ionization Modes .. 3
 - Electron Ionization Mode .. 4
 - Chemical Ionization Mode .. 4
- Ion Polarity Modes .. 5
- Scan Modes .. 5
 - Q1MS and Q3MS Scan Modes .. 7
 - Product Scan Mode .. 7
 - Parent Scan Mode .. 8
 - Neutral Loss Scan Modes ... 9
- Data-Dependent Scan Mode ... 11
- Scan Types .. 12
 - Full Scan .. 12
 - Selected Ion Monitoring (SIM) ... 12
 - Selected Reaction Monitoring (SRM) 13
 - Highly-Selective Reaction Monitoring (H-SRM) 13
 - Intelligent Selected Reaction Monitoring (iSRM) 13
 - Quantitation-Enhanced, Data-Dependent MS (QED MS) 14
 - AutoSIM .. 14
- Data Types .. 14
 - Profile Data Type .. 14
 - Centroid Data Type .. 15
- Mass/Charge Range .. 15

Chapter 2 Functional Description .. 17

- Autosampler .. 18
- Gas Chromatograph .. 19
Contents

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Replaceable Parts and Consumables</th>
<th>161</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accessory Kit</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Chemicals Kit</td>
<td>162</td>
</tr>
</tbody>
</table>

Index

163
Preface

The Thermo Scientific TSQ Quantum XLS™ and TSQ Quantum GC™ systems are members of the TSQ™ Quantum family of mass spectrometers.

This TSQ Quantum XLS and TSQ Quantum GC User Guide contains a description of the modes of operation and principle hardware components of your TSQ Quantum XLS or TSQ Quantum GC system. In addition, this manual provides step-by-step instructions for cleaning and maintaining your mass spectrometer.

Related Documentation

In addition to this manual, Thermo Fisher provides the following for the TSQ Quantum XLS and TSQ Quantum GC:

• Preinstallation Requirements Guide
• Help available from within the software

Safety and Special Notices

Make sure you follow the precautionary statements presented in this guide. The safety and other special notices appear in boxes.

Safety and special notices include the following:

<table>
<thead>
<tr>
<th>CAUTION</th>
<th>Highlights hazards to humans, property, or the environment. Each CAUTION notice is accompanied by an appropriate CAUTION symbol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPORTANT</td>
<td>Highlights information necessary to prevent damage to software, loss of data, or invalid test results; or might contain information that is critical for optimal performance of the system.</td>
</tr>
<tr>
<td>Note</td>
<td>Highlights information of general interest.</td>
</tr>
</tbody>
</table>
Tip Highlights helpful information that can make a task easier.
Safety Precautions

Observe the following safety precautions when you operate or perform service on the mass spectrometer.

CAUTION Do Not Perform Any Servicing Other Than That Contained in the TSQ Quantum XLS and TSQ Quantum GC User Guide. To avoid personal injury or damage to the instrument, do not perform any servicing other than that contained in the *TSQ Quantum XLS and TSQ Quantum GC User Guide* or related manuals unless you are authorized to do so.

CAUTION Shut Down the Mass Spectrometer and Disconnect It From Line Power Before You Service It. High voltages capable of causing personal injury are used in the instrument. Some maintenance procedures require that the mass spectrometer be shut down and disconnected from line power before service is performed. Do not operate the mass spectrometer with the top or side covers off. Do not remove protective covers from PCBs.

CAUTION Respect Heated Zones. Treat heated zones with respect. The ion source and transfer line might be very hot and might cause severe burns if they are touched. Allow heated components to cool before you service them.

CAUTION Provide and Adequate Fume Exhaust System. It is your responsibility to provide an adequate fume exhaust system. Samples and solvents that are introduced into the mass spectrometer will eventually be exhausted from the forepump. Therefore, the forepump should be connected to a fume exhaust system. Consult local regulations for the proper method of exhausting the fumes from your system.

CAUTION Use Care When Changing Vacuum Pump Oil. Treat drained vacuum pump oil and pump oil reservoirs with care. Hazardous compounds introduced into the system might have become dissolved in the pump oil. Always use approved containers and procedures for disposing of waste oil. Whenever a pump has been operating on a system used for the analysis of toxic, carcinogenic, mutagenic, or corrosive/irritant chemicals, the pump must be decontaminated by the user and certified to be free of contamination before repairs or adjustments are made by a Thermo Fisher Scientific San Jose Customer Support Engineer or before it is sent back to the factory for service.
Solvent and Gas Purity Requirements

Use the highest purity solvents available. The TSQ Quantum XLS and TSQ Quantum GC mass spectrometers are extremely sensitive to solvent impurities. Liquid chromatography grade is the minimum acceptable purity. Higher grade solvents are preferred. Distilled water is recommended. Deionized water contains chemicals and is not recommended. For a wide variety of solvents and consumables, visit www.FisherLCMS.com.

The TSQ Quantum XLS and TSQ Quantum GC mass spectrometers use argon as a collision gas. The argon must be high purity (99.995%). The required gas pressure is 135 ± 70 kPa (20 ± 10 psig). Thermo Fisher has found that particulate filters are often contaminated and are therefore not recommended.

Service Philosophy

Servicing the TSQ Quantum XLS and TSQ Quantum GC systems consists of performing procedures required to maintain system performance standards, prevent system failure, restore the system to an operating condition, or all of the above. Routine and preventive maintenance procedures are documented in this manual.

The user is responsible for routine and preventive maintenance during and after the warranty period. Regular maintenance increases the life of the system, maximizes the up-time of your system, and allows you to achieve optimum system performance.

Only a Thermo Fisher Scientific Customer Support Engineer can perform services not described in this manual.

Level of Repair

Thermo Fisher Scientific’s service philosophy for the TSQ Quantum XLS and TSQ Quantum GC systems calls for troubleshooting to the lowest part, assembly, printed circuit board (PCB), or module listed in the “Replaceable Parts” chapter of this manual.

For mechanical failures: A mechanical assembly typically is to be repaired to the level of the smallest item listed in the “Replaceable Parts” chapter of this manual.

For electronic failures: PCBs are not repaired to the component level except in certain cases of fuses, relays, and so on. When these exceptions occur, component information can be found in the “Replaceable Parts” chapter.
Contacting Us

There are several ways to contact Thermo Fisher Scientific.

❖ To contact Technical Support

Phone 800-685-9535
Fax 561-688-8736
E-mail TechSupport.C+MS@thermofisher.com
Knowledge base www.thermokb.com

Find software updates and utilities to download at www.mssupport.thermo.com.

❖ To contact Customer Service for ordering information

Phone 800-532-4752
Fax 561-688-8731
Web site www.thermo.com/finnigan

❖ To suggest changes to documentation or to Help

• Fill out a reader survey online at www.thermo.com/lcms-techpubs.
• Send an e-mail message to the Technical Publications Editor at techpubs.finnigan-lcms@thermofisher.com.
Introduction

The TSQ Quantum XLS™ and TSQ Quantum GC™ are members of the TSQ™ Quantum family of Thermo Scientific mass spectrometers. The TSQ Quantum XLS and the TSQ Quantum GC are advanced analytical instrument that includes a mass spectrometer, liquid chromatograph, and the Xcalibur™ data system. See Figure 1.

Contents

- Ionization Modes
- Ion Polarity Modes
- Scan Modes
- Scan Types
- Data Types
- Mass/Charge Range

In a typical analysis, an autosampler (AS) introduces a sample into the gas chromatograph (GC). The GC separates the sample into its various components. The components elute from the GC and pass into the mass spectrometer where they are analyzed.
The TSQ Quantum XLS and TSQ Quantum GC mass spectrometers include an electron ionization/chemical ionization (EI/CI) ion source, ion optics, a triple-stage mass analyzer, and an ion detection system, all of which are enclosed in a vacuum manifold. Ionization of the sample takes place in the ion source. The specific process used to ionize the sample is known as the ionization mode. The ion optics transmit the ions produced in the ion source into the mass analyzer, where they are filtered according to their mass-to-charge ratio. The polarity of the potentials applied to the lenses in the ion source and ion optics determines whether positively charged ions or negatively charged ions are transmitted to the mass analyzer. You can configure the mass spectrometer to analyze positively or negatively charged ions (called the positive or negative ion polarity mode).

The mass spectrometer’s triple-stage mass analyzer performs either one or two stages of mass analysis:

- The mass spectrometer is operated as a conventional mass spectrometer with one stage of mass analysis. The ion source ionizes the sample and the ion products are subjected to mass analysis in the first rod assembly. The second and third rod assemblies transmit the resulting mass-selected ions to the ion detection system.\(^1\)
The mass spectrometer is operated as a tandem mass spectrometer with two stages of mass analysis. The ion source ionizes the sample and the ion products are mass analyzed by the first rod assembly. In this case, however, mass-selected ions exiting the first rod assembly collide with an inert gas in the second rod assembly and fragment to produce a set of ions known as product ions. (A chamber called the collision cell surrounds the second rod assembly. The collision cell can be pressurized with an inert gas.) The product ions undergo further mass analysis in the third rod assembly to detect selected ions. Two stages of mass analysis yield far greater chemical specificity than a single stage can achieve, because of the system's ability to select and determine two discrete but directly related sets of masses.

In a first stage of mass analysis the mass spectrometer can be used to elucidate the structures of pure organic compounds and the structures of the components within mixtures. Furthermore, in a second stage of mass analysis, the mass spectrometer can fragment and separate each ionic fragment of a molecule formed in the ion source to build up an entire structure for the molecule, piece by piece. Thus, TSQ Quantum XLS and TSQ Quantum GC systems make investigating all pathways for the formation and fragmentation of each ion in the mass spectrum possible.

The two stages of mass analysis, with resultant reduction of chemical noise in the final mass spectrum, allow for very selective and sensitive analysis.

Each sequence of single or triple-stage mass analysis of the ions is called a scan. The mass spectrometer uses several different scan modes and different scan types to filter, fragment, or transmit ions in the mass analyzer. Along with the ionization and ion polarity modes, the ability to vary the scan mode and scan type affords the user great flexibility in the instrumentation for solving complex analytical problems.

Ionization Modes

The specific process used to ionize the analyte is referred to as the ionization mode. You can operate the TSQ Quantum XLS and TSQ Quantum GC mass spectrometers in either of two ionization modes:

- Electron ionization mode
- Chemical ionization mode

1 The instrument can also be used as a single-stage mass spectrometer by transmitting the ions through the first and second rod assemblies followed by mass analysis in the third rod assembly.
Electron Ionization Mode

In electron ionization (EI) mode, electrons are emitted by a heated, wire filament that has electric current running through it, by thermionic emission. The filament and its reflector are typically maintained at a -70 V potential relative to the ion source block. This potential accelerates the electrons through the ionization space, called the ion volume. These energetic electrons interact with neutral, gas-phase analyte molecules present in the ion volume and cause the analyte to lose an electron and produce a radical cation:

\[M + e^- \rightarrow M^+ + 2e^- \]

Frequently, numerous cleavage reactions give rise to fragment ions, which provide structural information about the analyte.

EI positive-ion mode is the only commonly used EI mode.

Chemical Ionization Mode

In chemical ionization (CI) mode, ionization of the sample molecules is a multi-step process:

1. Reagent gas is introduced into the CI ion volume at a flow (for methane) of about 2 mL/min, along with sample vapors typically present at partial pressures of less than one-thousandth that of the reagent gas.

2. The energetic (typically 100 eV) electrons emitted by the heated filament interact to ionize the reagent gas and form a plasma. This reaction also produces thermal electrons.

3. Reagent gas ions react with reagent gas molecules to form a variety of secondary ions that are stable with respect to further reaction with reagent gas.

For example, for methane:

\[CH_4 + e^- \rightarrow CH_4^+ + 2e^- \]
\[CH_4 + e^- \rightarrow CH_3^+ + e^- + H^- \]
\[CH_4^+ + CH_4 \rightarrow CH_5^+ + CH_3^- \]
\[CH_3^+ + CH_4 \rightarrow C_2H_5^+ + H_2 \]

4. Positive sample ions are formed by one of the following:
 - The transfer of a proton from a secondary reagent gas ion to a sample molecule
 - The abstraction of an electron by a reagent gas ion
 - An ion association reaction in which an adduct ion is formed between a reagent gas ion and a sample molecule

In methane positive ion mode CI, the relevant peaks observed are MH\(^+\), [M+CH\(_3\)]\(^+\), and [M+C\(_2\)H\(_3\)]\(^+\); but mainly MH\(^+\).
In isobutane positive ion mode CI, the main peak observed is MH⁺.

In ammonia positive ion mode CI, the main peaks observed are MH⁺ and [M+NH₄]⁺.

Negative sample ions are most commonly formed by one of the following:

- Sample molecules capture the secondary thermal electrons present in the ion source
- Electron transfer from ionized reagent gas (e.g. NH₂⁻)
- Proton abstraction

Molecular ions observed in negative ion chemical ionization mass spectra are usually M⁻ or [M-H]⁻.

Ion Polarity Modes

You can operate the TSQ Quantum XLS and TSQ Quantum GC mass spectrometers in either of two ion polarity modes: positive or negative. Both positively charged and negatively charged ions form in the ion source of the mass spectrometer. The mass spectrometer controls whether positive ions or negative ions are transmitted to the mass analyzer for mass analysis by changing the polarity of the potentials applied to the ion source and ion optics. The ion optics deliver the ions produced in the ion source, in a collimated beam, to the mass analyzer. The mass spectrometer can switch between positive and negative polarity modes in under 95 ms.

The information obtained from a positive-ion mass spectrum is different from and complementary to the information from a negative-ion spectrum. Thus, the ability to obtain both positive-ion and negative-ion mass spectra aids you in the qualitative analysis of your sample. You can choose the ion polarity mode and ionization mode to obtain maximum sensitivity for the particular analyte of interest.

Scan Modes

You can operate the TSQ Quantum XLS and TSQ Quantum GC mass spectrometers in a variety of scan modes. The most commonly used scan modes can be divided into two categories: single mass spectrometry (MS) scan modes and MS/MS scan modes. The scan modes in each category are as follows:

- MS scan modes: Q1MS and Q3MS scan modes
- MS/MS scan modes: Product scan mode, Parent scan mode, Neutral Loss scan mode
- Data-dependent scan mode

The scan modes that can be employed depend on the number and type of rod assemblies and the voltages applied to the rod assemblies.
The mass analyzer or the mass spectrometer has three rod assemblies. The first and third rod assemblies, Q1 and Q3, are quadrupoles, and the second rod assembly, Q2, is a square-profile quadrupole.

Rod assemblies can operate in either of two capacities:

- As ion transmission devices
- As mass analyzers

If only RF voltage is applied, a rod assembly serves as an ion transmission device that passes all ions within a large range of mass-to-charge ratios (that is, virtually all ions present).

When you apply both RF and dc voltages to a rod assembly, the separation of ions of different mass-to-charge ratios occurs. This separation allows the rod assembly to serve as a mass analyzer.

On the TSQ Quantum XLS and TSQ Quantum GC mass spectrometers, the quadrupole rod assemblies can operate with rf and dc voltages or with only rf voltage. That is, Q1 and Q3 can act either as mass analyzers or ion transmission devices. The Q2 rod assembly operates exclusively with rf voltage. Thus, Q2 is always an ion transmission device. Surrounding Q2 is a collision cell where fragmentation can take place if the argon collision gas is present in the cell. For a summary of how the rod assemblies function in several of the major scan modes, see Table 1.

Table 1. Summary of scan modes

<table>
<thead>
<tr>
<th>Scan mode</th>
<th>Q1 quadrupole</th>
<th>Q2 collision cell</th>
<th>Q3 quadrupole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1MS</td>
<td>Scan</td>
<td>Pass all ions</td>
<td>Pass all ions</td>
</tr>
<tr>
<td>Q3MS</td>
<td>Pass all ions</td>
<td>Pass all ions</td>
<td>Scan</td>
</tr>
<tr>
<td>Product</td>
<td>Set</td>
<td>Fragment ions, then pass all fragments</td>
<td>Scan</td>
</tr>
<tr>
<td>Parent</td>
<td>Scan</td>
<td>Fragment ions, then pass all fragments</td>
<td>Set</td>
</tr>
<tr>
<td>Neutral Loss</td>
<td>Scan</td>
<td>Fragment ions, then pass all fragments</td>
<td>Scan</td>
</tr>
</tbody>
</table>

*a Scan = full scan or transmission of selected ions

*b Pass all ions or fragments = pass ions or fragments within a wide range of mass-to-charge ratios

*c Fragment ions = collisions with argon gas cause ions to fragment

*d Set = set to pass ions of a single mass-to-charge ratio or a set of mass-to-charge ratios

2 A rod assembly is a regular array of metal rods. Refer to "Mass Analyzer" on page 32 for a discussion of the rod assemblies used on the TSQ Quantum XLS instrument.
Q1MS and Q3MS Scan Modes

In the Q1MS and Q3MS scan modes, only one stage of mass analysis is performed. The mass spectrum obtained is equivalent to the mass spectrum obtained from an instrument with a single mass analyzer. In the one stage of analysis, ions formed in the ion source enter the analyzer assembly. One of the mass analyzers (Q1 or Q3) is scanned to obtain a complete mass spectrum. The other rod assemblies (Q2 and Q3, or Q1 and Q2, respectively) act as ion transmission devices. In the Q1MS scan mode, Q1 is used as the mass analyzer; in the Q3MS scan mode, Q3 is used as the mass analyzer.

Product Scan Mode

Product scan mode performs two stages of analysis. In the first stage, ions formed in the ion source enter Q1, which is set to transmit ions of one mass-to-charge ratio. Ions selected by this first stage of mass analysis are called parent ions. (As a result, Q1 is referred to as the parent mass analyzer, and the mass-to-charge ratio of ions transmitted by the parent mass analyzer is referred to as the parent set mass.) Parent ions selected by Q1 then enter Q2, which is surrounded by the collision cell.

In the second stage of analysis, ions in the collision cell can fragment further to produce product ions. Two processes produce product ions: by unimolecular decomposition of metastable ions or by interaction with argon collision gas present in the collision cell. This latter step is known as collision-induced dissociation (CID). Ions formed in the collision cell enter Q3 (the product mass analyzer) for the second stage of mass analysis. Q3 is scanned to obtain a mass spectrum that shows the product ions produced from the fragmentation of the selected parent ion.

A mass spectrum obtained in the Product scan mode (product mass spectrum) is the mass spectrum of a selected parent ion.

The Product scan mode is illustrated in Figure 2.
Parent Scan Mode

The Parent scan mode also uses two stages of analysis. In the first stage, ions formed in the ion source are introduced into the parent mass analyzer, which is scanned to transmit parent ions sequentially into the collision cell.

In the second stage of analysis, in the collision cell, parent ions can fragment to produce product ions by unimolecular decomposition of metastable ions or by collision-induced dissociation. Ions formed in the collision cell enter the product mass analyzer, which transmits a selected product ion. (The product set mass is the mass-to-charge ratio of ions transmitted by the product mass analyzer.)

The resultant spectrum shows all the parent ions that fragment to produce the selected product ion. Note that for a mass spectrum obtained in the Parent scan mode (parent mass spectrum), data for the mass-to-charge ratio axis are obtained from Q1 (the parent ions), whereas data for the ion intensity axis are obtained from Q3 (from monitoring the product ion).

The Parent scan mode is illustrated in Figure 3.
Experiments that employ the parent scan mode (parent experiments) can be used in structure and fragmentation studies as well as in survey analyses of mixtures. In general, parent experiments detect all compounds that decompose to a common fragment. The experiments are useful for the rapid detection of a series of structural homologs that have a common fragment ion (for example, \(m/z \) 149 for the phthalates).

Neutral Loss Scan Modes

In the Neutral Loss scan mode, the two mass analyzers (Q1 and Q3) are linked together so that they are scanned at the same rate over mass ranges of the same width. The respective mass ranges, however, are offset by a selected mass, such that the product mass analyzer scans a selected number of mass units lower than the parent mass analyzer.

Thus, in the Neutral Loss scan mode, there are two stages of mass analysis. In the first stage, the parent mass analyzer separates ions formed in the ion source by mass-to-charge ratio. Then the ions are introduced sequentially into the collision cell.

In the second stage of analysis, ions admitted to the collision cell can fragment further by metastable ion decomposition or by CID to produce product ions. The product mass analyzer then separates these product ions by mass-to-charge ratio. Neutral Loss scan mode is illustrated in Figure 4. Examples of compounds with a common neutral loss fragment appear in Figure 5.
To detect an ion, between the time the ion leaves Q1 and enters Q3, it must lose a neutral moiety whose mass (the neutral loss mass) is equal to the difference in the mass ranges being scanned by the two mass analyzers. Thus, a neutral loss mass spectrum is a spectrum that shows all the parent ions that lose a neutral species of a selected mass.

Note that a neutral gain (or association) experiment can also be performed in which the mass range scanned by Q3 is offset by a selected mass above the mass range scanned by Q1.

For a neutral loss (or neutral gain) mass spectrum, as for a parent mass spectrum, data for the mass-to-charge ratio axis are obtained from Q1 (the parent ion), whereas data for the ion intensity axis are obtained from Q3 (the product ion being monitored).

Experiments that use the Neutral Loss scan mode (neutral loss experiments) are useful when a large number of compounds are being surveyed for common functionality. Neutral moieties are frequently lost from substituent functional groups (for example, CO₂ from carboxylic acids, CO from aldehydes, HX from halides, and H₂O from alcohols).

Figure 4. Illustration of the Neutral Loss scan mode
Data-Dependent Scan Mode

The TSQ Quantum XLS and TSQ Quantum GC mass spectrometers use the information in a data-dependent scan mode experiment to make automatic decisions about the next step of the experiment without input from a user. In data-dependent scan mode you specify criteria to select one or more ions of interest on which to perform subsequent scans, such as MS/MS. You can approach the setup of data-dependent experiments in either of two ways:

- If you have some idea of what the parent ion is, or if you expect a certain kind of parent ion, you can set up a list of possible parent ions. Then, when one of the parent ions you specified is detected, you can acquire product spectra and analyze the information. Conversely, you can also set up a list of ions that you do not want selected for fragmentation.

- If you have little information about your compound, you can set up the parameters of a data-dependent experiment so that if the intensity of the ion signal is above a specified threshold, the mass spectrometer generates product spectra. Later, you can decide if the information is useful.

Because a data-dependent scan needs to use a target ion from a previous scan, the first scan event cannot be a data-dependent scan.
Scan Types

You can operate the TSQ Quantum XLS and TSQ Quantum GC systems with a variety of scan types. The most common scan types are as follows:

- Full Scan
- Selected Ion Monitoring (SIM)
- Selected Reaction Monitoring (SRM)
- Intelligent Selected Reaction Monitoring (iSRM)
- Quantitation-Enhanced, Data-Dependent MS (QED MS)
- AutoSIM

Full Scan

The full-scan scan type provides a full mass spectrum of each analyte. With full scan, the scanning mass analyzer is scanned from the first mass to the last mass, without interruption, in a given scan time.

Full-scan experiments are used to determine or confirm the identity of unknown compounds or the identity of each component in a mixture of unknown compounds. (Generally, a full mass spectrum is needed to determine the identity of an unknown compound.)

The full-scan scan type gives you more information about an analyte than does SIM, but a full scan does not yield the sensitivity that the other two scan types can achieve. With full scan, you spend less time monitoring the signal for each ion than you do in SIM or SRM. Full scan provides greater information but lower sensitivity than the other two scan types.

To use the SIM or SRM, you need to know what ions or reactions you are looking for before you can perform an experiment with these scan types. Thus, you might use a full scan for SIM to determine the identity of an analyte and to obtain its mass spectrum and a full scan for SRM to determine the mass spectrum and product mass spectra for parent ions of interest. Then, you might use SIM or SRM to do routine quantitative analysis of the compound.

Selected Ion Monitoring (SIM)

Selected ion monitoring (SIM) monitors a particular ion or set of ions. SIM experiments are useful in detecting small quantities of a target compound in a complex mixture when you know the mass spectrum of the target compound. Thus, SIM is useful in trace analysis and in the rapid screening of a large number of samples for a target compound.
Because SIM monitors only a few ions, it can provide lower detection limits and greater speed than the full-scan modes. SIM achieves lower detection limits because more time is spent monitoring significant ions that are known to occur in the mass spectrum of the target analyte. SIM can achieve greater speed because it monitors only a few ions of interest; SIM does not monitor regions of the spectrum that are empty or have no ions of interest.

SIM can improve the detection limit and decrease analysis time, but it can also reduce specificity. Because SIM monitors only specific ions, any compound that fragments to produce those ions will appear to be the target compound. The result could be a false positive.

Selected Reaction Monitoring (SRM)

Selected reaction monitoring (SRM) monitors a particular reaction or set of reactions, such as the fragmentation of an ion or the loss of a neutral moiety.

SRM monitors a limited number of parent/product-ion pairs. In product-type experiments, a parent ion is selected as usual, but generally only one product ion is monitored. SRM experiments are normally conducted with the product scan mode.

As does SIM, SRM provides for the very rapid analysis of trace components in complex mixtures. However, because SRM selects two sets of ions, it obtains specificity that is much greater than what SIM can obtain. Any interfering compound would not only have to form an ion source product (parent ion) of the same mass-to-charge ratio as the selected parent ion from the target compound, but that parent ion would also have to fragment to form a product ion of the same mass-to-charge ratio as the selected product ion from the target compound.

Highly-Selective Reaction Monitoring (H-SRM)

Highly-selective reaction monitoring (H-SRM) is SRM performed at higher resolution (0.4 u FWHM versus 0.7 u FWHM for SRM).

Intelligent Selected Reaction Monitoring (iSRM)

In intelligent selected reaction monitoring (iSRM) experiments, the TSQ Quantum XLS and TSQ Quantum GC mass spectrometers perform multiple “primary” selected reaction monitoring (SRM) scans for each analyte (parent ion) of interest. The mass spectrometer uses for quantification the sum of the intensities of an analyte’s primary SRM scans.

You specify a trigger threshold for each primary SRM scan. If the intensities of all the listed primary SRM reactions for an analyte are above their trigger thresholds, and if all these scans are within a specified retention time window, then the mass spectrometer performs “secondary” SRM scans to confirm the identity of the analyte. The maximum number of secondary SRM reactions is 12400.
The mass spectrometer uses reference SRM scans to adjust the acquisition time window of subsequent SRM scans. It uses the time difference between the expected and observed retention times of reference SRM reactions to correct the retention times that it uses to make procedural decisions. The mass spectrometer still records data with the true retention times. You should specify two to four reference reactions spaced throughout the LC run. The mass spectrometer uses the preceding two retention time corrections to calculate a piecewise linear retention time correction for the primary SRM scans that follow. As with primary SRM scans, reference SRM scans may trigger secondary SRM scans.

The maximum number of primary plus reference SRM transitions is 3600.

Quantitation-Enhanced, Data-Dependent MS (QED MS)

Quantitation-enhanced, data-dependent MS (QED MS) scan type provides simultaneous quantitation (SRM) and structural confirmation (full-scan MS/MS product ion spectra). If the intensity of an SRM reaction that you specify for a parent ion is above its trigger threshold, the mass spectrometer performs a full-scan MS/MS product ion scan to confirm the identity of the analyte.

AutoSIM

In the scan type known as AutoSIM, the mass spectrometer automatically selects the most intense masses (m/z values) in a survey scan, builds a SIM scan list for them, and then acquires and records ion current at only these selected masses. AutoSIM scans can be performed on any full scan in any scan mode, but not on data-dependent scans.

Data Types

You can acquire and display mass spectral data (intensity versus mass-to-charge ratio) with the TSQ Quantum XLS and TSQ Quantum GC mass spectrometers in one of two data types:

- Profile data type
- Centroid data type

Profile Data Type

In the profile data type, you can see the shape of the peaks in the mass spectrum. Each atomic mass unit is divided into many sampling intervals. The intensity of the ion current is determined at each of the sampling intervals. The profile data type displays the intensity at each sampling interval with the intensities connected by a continuous line. In general, use the profile scan data type when you tune and calibrate the mass spectrometer so that you can easily see and measure mass resolution.
Centroid Data Type

The centroid data type displays the mass spectrum as a bar graph and sums the intensities of each set of multiple sampling intervals. This sum is displayed versus the integral center of mass of the sampling intervals. In general, use the centroid scan data type for data acquisition for faster scan speed. Data processing is also much faster for centroid data.

Mass/Charge Range

The TSQ Quantum XLS and TSQ Quantum GC mass spectrometers can operate in a mass/charge range of 10 to 3000 Da.
Functional Description

This chapter describes the principal components of the TSQ Quantum XLS and TSQ Quantum GC systems and their respective functions.

A functional block diagram of the TSQ Quantum XLS or TSQ Quantum GC system is shown in Figure 6. A sample transfer line connects the gas chromatograph (GC) to the mass spectrometer. The autosampler and GC are installed on the left side of the mass spectrometer.

In analysis by GC/MS, a sample is injected into a GC column. The sample then separates into its various components. The components elute from the GC column and pass through the transfer line into the mass spectrometer where they are analyzed. You can also use a direct sample probe to introduce sample into the mass spectrometer.

Electron ionization (EI) or chemical ionization (CI) ionize sample molecules upon entering the mass spectrometer. The ion optics focus and accelerate the resulting sample ions into the mass analyzer where they are filtered according to their mass-to-charge ratios. An ion detection system then produces a signal proportional to the number of ions detected. The system electronics receive and amplify the ion current signal from the ion detection system. That signal is then passed on to the data system for further processing, storage, and display. The data system provides the primary mass spectrometer user interface.
Autosampler

The (optional) Thermo Scientific TriPlus autosampler is used to inject samples automatically into the GC inlet. With an autosampler, you can automate your GC/MS/MS analyses. The TriPlus autosampler is shown in Figure 1 on page 2.

Autosampler Start/Stop signals with the mass spectrometer are provided by contact closure.

You configure the TriPlus autosampler from the data system computer. Select the TriPlus instrument button in the Instrument Configuration window, which is available by choosing **Start > All Programs > Xcalibur > Instrument Configuration**. Refer to Xcalibur Help for a description of TriPlus configuration options.

You also use the data system to set up the TriPlus autosampler to inject samples. Choose **Start > All Programs > Xcalibur > Xcalibur** and click **Instrument Setup** to open the Instrument Setup window. Then, click the **TriPlus** icon to open the TriPlus Autosampler page. Refer to the Help for instructions on running the TriPlus autosampler.

Refer to the documentation provided with the autosampler for maintenance procedures.
Gas Chromatograph

The Thermo Scientific TRACE GC Ultra gas chromatograph (GC) separates a sample mixture into its chemical components by gas chromatography. In gas chromatography, the sample mixture is partitioned between a solid stationary phase and a mobile gas. The stationary phase is adhered to the inside of a small-diameter glass tube: the capillary column. The molecular structure of each component of the mixture determines in which order each component elutes from the GC and enters the mass spectrometer. The TRACE GC Ultra gas chromatograph is shown in Figure 1 on page 2.

Gas chromatography is widely used in analytical chemistry, though the high temperatures used in GC make it unsuitable for high molecular weight biopolymers, frequently encountered in biochemistry. It is well suited for use in the petrochemical, environmental monitoring, and industrial chemical fields. It is also used extensively in chemistry research.

You configure the TRACE GC Ultra gas chromatograph from the data system computer. Select the TRACE GC Ultra instrument button in the Instrument Configuration window, which is available by choosing Start > All Programs > Xcalibur > Instrument Configuration. Refer to Xcalibur Help for a description of TRACE GC Ultra configuration options.

The TSQ Quantum XLS and TSQ Quantum GC data system computers can directly control the TRACE GC Ultra. Choose Start > Programs > Xcalibur > Xcalibur and click Instrument Setup to open the Instrument Setup window. Click the TRACE GC Ultra icon to open the TRACE GC Ultra page. Refer to the Help for instructions for operating the TRACE GC Ultra.

Front-panel (keypad) operation of the GC and maintenance procedures for the GC are described in the documentation provided with the GC. To replace the GC capillary column, see “Removing and Installing a GC Capillary Column” on page 122.

Direct Sample Probes

With the (optional) direct sample probes you can introduce compounds directly into the ion source without GC column separation. See Figure 7. The direct sample probes are ideal for qualitative or semi-quantitative analysis of materials that don’t require a GC column separation, or are difficult, if not impossible, to elute chromatographically, such as solids. The direct sample probes introduce samples directly into the ion source via a vacuum interlock. A single controller box (Figure 7) with interchangeable probe tools makes it easy to select the best method of sample introduction.

The direct sample probe system includes two probe tools:

- Direct exposure probe
- Direct insertion probe
The direct exposure probe (DEP) has a heated filament that rapidly vaporizes liquids or solutions. The DEP is ideal for rapid molecular weight confirmation of liquids or solids dissolved in a suitable solvent. The DEP can vaporize compounds with a high boiling point.

The direct insertion probe (DIP) has a temperature-controlled, heated capillary tube that slowly vaporizes solid samples. You can use the DIP for rapid analysis of solids or trace components in solid matrices, such as forensic samples or tissue.

Figure 7. Direct sample probe and controller

Transfer Line

The transfer line is the interface between the GC and mass spectrometer. The transfer line heats the capillary column as it passes from the GC into the ion source in the mass spectrometer. This prevents the sample from condensing. The transfer line includes an inlet for calibration gas and chemical ionization gas.
The TSQ Quantum XLS mass spectrometer provides sample ionization and mass analysis of samples introduced from a gas chromatograph or direct insertion probe. The mass spectrometer uses a triple-quadrupole mass analyzer with an ion source external to the mass analyzer. Several important features of the TSQ Quantum XLS and TSQ Quantum GC mass spectrometers are as follows:

- High sensitivity and resolution
- \(m/z \) 10 to 3000 mass range
- EI and CI ionization modes
- Positive and negative ion polarity modes
- MS and MS/MS scan modes
- Full-scan, SIM, SRM, iSRM, QED MS, AutoSIM, and data-dependent scan types

The mass spectrometer includes the following components:

- Controls and Indicators
- EI CI Ion Source
- Ion Optics
- Mass Analyzer
Functional Description

Mass Spectrometer

- Ion Detection System
- Vacuum System and Inlet Gasses Hardware
- Electronic Assemblies
- Data System

Controls and Indicators

Five light-emitting diodes (LEDs) are located at the upper right side of the front panel of the mass spectrometer. See Figure 9.

The Power LED illuminates green whenever power is supplied to the vacuum system and electronic assemblies of the mass spectrometer.

The Vacuum LED illuminates yellow when the turbomolecular pump is nearly at speed (80% of its operating speed of 750 MHz) and it is safe to turn on the ion gauge. The Vacuum LED is off if the turbomolecular pump is not at speed. The Vacuum LED illuminates green whenever the pressure in the analyzer chamber, as measured by the ion gauge, is at or below the value required to enable high voltages to the mass analyzer. See Table 2.

Figure 9. Front panel LEDs of the mass spectrometer

Table 2. Maximum allowed pressure to turn on high voltages

<table>
<thead>
<tr>
<th>Carrier gas</th>
<th>Ar collision gas</th>
<th>Maximum pressure (Torr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>Off</td>
<td>6×10^{-6}</td>
</tr>
<tr>
<td>He</td>
<td>On</td>
<td>5×10^{-5}</td>
</tr>
<tr>
<td>H$_2$</td>
<td>Off</td>
<td>5×10^{-5}</td>
</tr>
<tr>
<td>H$_2$</td>
<td>On</td>
<td>1×10^{-4}</td>
</tr>
</tbody>
</table>

The Communication LED illuminates yellow when the mass spectrometer and the data system are trying to establish a communication link. The Communication LED illuminates green when the Ethernet communication link between the mass spectrometer and the data system has been made.
The System LED illuminates yellow whenever the mass spectrometer is in Standby—that is, high voltage is not supplied to the ion source, mass analyzer, or ion detection system, but the mass spectrometer power is on. The System LED illuminates green whenever the high voltage is enabled and the system is in the On state. High voltage is enabled if the pressure of the analyzer chamber is below the values listed in Table 2.

The Scan LED flashes blue whenever the mass spectrometer is on and is scanning ions.

The System Power Off button, located on the front of the electronics module, turns off power to the mass spectrometer, gas chromatograph, and autosampler. See Figure 10. You must use the main power circuit breaker, located on the back of the electronics module, to restore power to the mass spectrometer, gas chromatograph, and autosampler.

CAUTION In an emergency, to shut off all power to the mass spectrometer, gas chromatograph, and autosampler, press the System Power Off button located at the front of the instrument.

Figure 10. Front panel System Power Off button

The main power circuit breaker switch (labeled Main Power) is located on the power panel at the back of the electronics module. See Figure 11. In the Off (O) position, the circuit breaker removes all power to the mass spectrometer, gas chromatograph, and autosampler. In the On (I) position, power is supplied to the mass spectrometer, gas chromatograph, and autosampler. In the standard operational mode, the circuit breaker is kept in the On (I) position.
2 Functional Description

Mass Spectrometer

Figure 11. Rear power panel of the electronics module

The mass spectrometer main power circuit breaker switch (labeled Main Power) is located on the mass spectrometer power panel in the lower corner of the right-side panel of the mass spectrometer. See Figure 12. In the Off position, the circuit breaker removes all power to the mass spectrometer, including the vacuum pumps. In the On position, power is supplied to the mass spectrometer. In the standard operational mode, the circuit breaker is kept in the On position.

The electronics service switch (labeled Electronics) is located next to the main power circuit breaker on the mass spectrometer power panel (Figure 12). In the Service Mode position the switch removes power to all components of the mass spectrometer other than the vacuum system. The Operating Mode position supplies power to all non-vacuum system components of the mass spectrometer.

The vacuum service switch (labeled Vacuum) is located next to the electronics service switch on the mass spectrometer power panel (Figure 12). In the Service Mode position the switch removes power to all components of the vacuum system, including the forepump, turbomolecular pump, and turbomolecular pump controller. The switch in the Operating Mode position supplies power to all vacuum system components of the mass spectrometer.

The System Reset button is also located on the mass spectrometer power panel. Pressing the System Reset button takes the 5 V logic to ground and causes the embedded computer on the System Control PCB to reboot. The mass spectrometer software is then reloaded from the data system. See “Resetting the Mass Spectrometer” on page 59 for information on how to reset the mass spectrometer.

Three LEDs are located on the power panel: The Pump On LED is green when the rough pump current sensor detects current to the forepump. The LED is off when the rough-pump current sensor does not detect current to the forepump. If the current sensor detects a loss of current when the mass spectrometer is on, the vacuum system vents.

The Vent Valve Closed LED is green whenever the vent valve current sensor detects current through the vent valve and the vent valve is closed. The LED is off when the vent valve is open.
The Ethernet Link OK LED is green when the System Control PCB is communicating with the data system PC. The LED is off when there is no communication between the System Control PCB and the data system PC.

Figure 12. Right-side power panel of the mass spectrometer

EI CI Ion Source

The ion source forms gas phase sample ions from sample molecules that elute from the GC or are introduced by the direct sample probe. You can operate the ion source in either the electron ionization (EI) or chemical ionization (CI) mode. See “Ionization Modes” on page 3.
Figure 13. Ion source of the TSQ Quantum XLS
The ion volume, located in the center of the ion source, is the site where electrons interact with sample or reagent gas molecules to form ions. Three exchangeable ion volumes and ion volume holders are available for use in the ion source. See Figure 15. The choice of ion volume depends on the ionization mode. The open EI ion volume is open on the analyzer end, with a relatively large electron entrance hole. The closed EI ion volume has a smaller ion exit hole than the EI ion volume. This results in a higher pressure of analyte, and greater sensitivity, but less dynamic range. The CI ion volume is closed on the analyzer end, except for a small ion exit hole and a relatively small electron entrance hole. In the CI mode it is important to maintain a relatively high reagent gas pressure.

The ion source block holds the ion volume in its center. Samples are introduced from the GC capillary column through an aperture on the side of the ion source block and then into the ion volume. Gases for calibration or chemical ionization enter the ion volume through a gas inlet tube.
Cartridge heaters heat the ion source block and lens assemblies to minimize the rate at which deposits form on the ion source block, ion volume, and lens assemblies. The ion source block is also heated to assist in the rapid temperature equilibration of the ion source block and ion volume after the filament is turned on. In EI mode, the ion source is typically maintained at 150 °C to 220 °C. However, lower or higher temperatures are sometimes used for certain applications. In the CI mode, the ion source is typically maintained at 180 °C to 200 °C. The ion source heater is feedback controlled.

The filament assembly, positioned in a recess at the top of the ion source block, contains the filament, reflector, and electron lens. The filament is a rhenium wire that is electrically heated to produce electrons by thermionic emission. The reflector repels electrons emitted by the filament away from the filament toward the ion volume. The filament and its reflector are maintained at a negative potential relative to the ion volume. The electron lens prevents positive ions from traveling up the electron beam. In turn, this prevents positive ions from leaving the ion volume through the electron entrance hole. The difference in potential between the filament and the ion volume determines the electron energy.

Two permanent magnets are held in a magnet yoke in the proper position above and below the ion source block. The permanent magnets collimate the electron beam and cause the beam to spiral through the ion volume. This ensures optimum ionization of the sample.

Two ion source lens assemblies, called the L1, L2, and L3 lens assembly and the Q00 quadrupole lens assembly, extract the ions formed in the ion source and transmit them to the ion optics. The lens L2 voltage is mass dependent. The rods of the Q00 quadrupole contact the rods of the Q0 quadrupole and share their rf and dc voltages.

In positive ion mode, the lenses are adjusted to a negative potential, and in negative ion mode, the lenses are adjusted to a positive potential. The arrangement of the lenses and their spacers enables quick and efficient pump-out of the ion source.
Inlet Valve

The inlet valve, which is attached to the front of the vacuum manifold, is a vacuum-sealed valve that allows you to change ion volumes or insert the direct exposure probe without venting the mass spectrometer to atmosphere. You use the insertion/removal (I/R) tool to insert or remove ion volumes. See Figure 16. The forepump evacuates the inlet valve.

The ball valve is a ball with a hole in it, and it is located between the vacuum manifold and the inlet valve block. The ball valve is open when the hole in the ball is aligned with the opening between the vacuum manifold and the inlet valve. The ball valve lever opens and closes the ball valve. When the ball valve is closed, it prevents the vacuum manifold from venting to atmosphere.

Figure 16. Inlet valve, I/R tool, guide bar, and ball valve lever
Ion Optics

The ion optics focus the ions produced in the ion source and transmit them to the mass analyzer. The ion optics includes the Q0 quadrupole and lenses L11 and L12.

The Q0 quadrupole is a square array of square-profile rods that acts as an ion transmission device. See Figure 17. An rf voltage applied to the rods gives rise to an electric field that guides the ions along the axis of the quadrupole. The Q0 offset voltage increases the translational kinetic energy of ions emerging from the ion source.

Figure 17. Q0 quadrupole

Figure 18 gives a cross-sectional view of the transfer line, ion source, and Q0 quadrupole.
Figure 18. Cross-sectional view of the transfer line, ion source, and Q0 quadrupole of the TSQ Quantum XLS
Figure 19. Cross-sectional view of the transfer line, ion source, and Q0 quadrupole of the TSQ Quantum GC

The L11 and L12 lenses are metal disks with a circular hole in the center through which the ion beam can pass. Together they act as a two-element cone lens. An electrical potential can be applied to the lens to accelerate (or decelerate) ions as they approach the lens and to focus the ion beam as it passes through the lens. The value ranges between 0 and ±300 V. Lenses L11 and L12 also act as a vacuum baffle between the Q0 quadrupole chamber and the mass analyzer chamber.

Mass Analyzer

The mass analyzer separates ions according to their mass-to-charge ratio and then passes them to the ion detection system. The mass analyzer on the TSQ Quantum XLS and TSQ Quantum GC mass spectrometer consists of three quadrupole rod assemblies (Q1, Q2, and Q3) and three lens sets.

The mass analyzer is discussed in detail in the following subtopics:

- Quadrupole Rod Assemblies
- rf and DC Fields Applied to the Quadrupoles
Quadrupole Rod Assemblies

The three rod assemblies used in the mass spectrometer are numbered from the ion source end of the manifold and are designated Q1, Q2, and Q3. Q1 and Q3 are quadrupoles that enable high-resolution scans without signal loss.

Q1 and Q3 are square arrays of precision-machined and precision-aligned, hyperbolic-profile round rods. Q1 or Q3 are shown in Figure 20. Quartz spacers act as electrical insulators between adjacent rods.

Figure 20. Q1 or Q3 quadrupole

Q2 is a square-profile quadrupole rod assembly. Q2 always acts as an ion transmission device. The Q2 quadrupole rods are bent through a 90-degree arc. In addition to reducing the footprint of the instrument, this prevents the transmission of unwanted neutral species to the detector and dramatically lowers the noise level in the data. Q2 has become synonymous with the term *collision cell*. Technically, the collision cell is the chamber that encloses Q2 where collision-induced dissociation can take place if the argon collision gas is present. See Figure 21.
Figure 21. Collision cell, Q2 quadrupole, and lenses

Lenses L21, L22, and L23

Lenses L31, L32, and L33

rf and DC Fields Applied to the Quadrupoles

In a quadrupole rod assembly, because rods opposite each other in the array connect electrically, the four rods can be considered as two pairs of two rods each. Ac and dc voltages are applied to the rods and these voltages are ramped during the scan. Voltages of the same amplitude and sign are applied to the rods of each pair. However, the voltages applied to the different rod pairs are equal in amplitude but opposite in sign. See Figure 22.

Figure 22. Polarity of the rf and dc voltages applied to the rods of the Q1 and Q3 mass analyzers

The ac voltage applied to the quadrupole rods is of constant frequency (1.123 MHz). The ac voltage applied to the rods varies from 0 to 10000 V P/P, and the dc voltage varies from 0 to ±840 V. Voltages of the same amplitude and sign are applied to each rod pair. However, the voltages applied to the other rod pair are equal in amplitude but opposite in sign.
Because the frequency of this ac voltage is in the radio frequency range, it is referred to as rf voltage. In Figure 23, the solid line represents the combined rf and dc voltage applied to one rod pair, and the dashed line represents the combined rf and dc voltage applied to the other rod pair. The ratio of rf voltage to dc voltage determines the ability of the mass spectrometer to separate ions of different mass-to-charge ratios.

The first and third quadrupole rod assemblies (Q1 and Q3 quadrupoles) can act as mass analyzers or as ion transmission devices. When both rf and dc voltages are applied, Q1 and Q3 function as mass analyzers. When only rf voltage is applied, they act as ion transmission devices. In the ion transmission mode, the quadrupole rod assemblies allow ions in a wide window of mass-to-charge ratios to pass.

The square quadrupole rod assembly (Q2) operates in the ion transmission mode only. Surrounding Q2 is a collision cell where collision-induced dissociation (CID) can take place if the argon collision gas is present in the cell.

Figure 23. Magnitude of the rf and dc voltages applied to the rods of the Q1 and Q3 mass analyzers
Mass Analysis

The Q1 and Q3 rods are charged with a variable ratio of rf voltage and dc voltage (Figure 23). These potentials give rise to an electrostatic field that gives stable oscillations to ions with a specific mass-to-charge ratio and unstable oscillations to all others.

At any given instant, one particular set of rf and dc voltage values is being applied to the mass analyzer rods. Under these conditions, only ions of one mass-to-charge ratio (for example, \(m/z \) 180) are maintained within bounded oscillations as their velocity carries them through the mass analyzer. During this same time, all other ions undergo unbounded oscillations. These ions strike one of the rod surfaces, become neutralized, and are pumped away, or they are ejected from the rod assembly.

Then, at a later time, both rf and dc voltages change, and ions of the next mass-to-charge ratio (for example, \(m/z \) 181) are allowed to pass, while all other ions (including \(m/z \) 180) become unstable and undergo unbounded oscillations. This process continues, with ions of one mass-to-charge ratio after another being transmitted, as the rf and dc voltages change in value. At the end of the scan, the rf and dc voltages are discharged to zero, and the process is repeated.

The potentials on the quadrupole rods can be changed rapidly and precisely. The rf and dc voltages in the mass spectrometer can be scanned over the full mass range of the system, \(m/z \) 10 to 3000, in 0.6 s.

The precision quadrupole rods of the mass spectrometer provide excellent sensitivity, peak shape, resolution, and high mass transmission.

Collision Cell and CID Efficiency

In the MS/MS scan modes, the mass spectrometer applies a large voltage of opposite polarity to the Q2 rod pairs between scans, which empties the collision cell. This process ensures that no ions remain in the collision cell from scan to scan.

The collision cell quadrupole rod assembly (Q2), which always acts as an ion transmission device, is a quadrupole array of square-profile rods. A variable rf voltage charges the rods, which creates an electrostatic field that gives stable oscillations to ions in a wide window of mass-to-charge ratios.

The collision cell surrounds Q2 and is usually pressurized from about \(1 \times 10^{-3} \) to \(4 \times 10^{-3} \) Torr with argon collision gas. The collision cell is where collision-induced dissociation (CID) takes place.

CID is a process in which an ion collides with a neutral atom or molecule and then, because of the collision, dissociates into smaller fragments. The mechanism of dissociation involves converting some of the translational kinetic energy (TKE) of the ion into internal energy. This collision places the ion in an excited state. If the internal energy is sufficient, the ion fragments.
Three expressions convey the efficiency of the CID process:

- **Collection efficiency**
- **Fragmentation efficiency**
- **Overall CID efficiency**

Collection efficiency

The ion flux ratio measured at the exit of the collision cell and at its entrance. With no collision gas present, the mass spectrometer obtains virtually 100 percent collection efficiency. Collection efficiency is a mass-dependent parameter. For example, with mid-range collision gas pressure, the collection efficiency might vary from about 50 percent for comparatively less massive ions (which are more prone to scatter) up to 75 percent for comparatively more massive ions (which are less prone to scatter).

Fragmentation efficiency

The fraction of the ion flux at the exit of the collision cell that results from fragmented ions. Fragmentation efficiency depends directly on the stability of the ion and indirectly on the mass of the ion. The more stable the ion, the less likely a given collision will fragment the ion. Typically, low mass ions require a higher collision energy to dissociate than high mass ions. To compensate for this, the data system allows you to specify a mass-dependent collision energy ramp.

With a mid-range collision gas pressure, fragmentation efficiency might vary from 15 percent to 65 percent for various compounds. As the collision gas pressure increases, the fragmentation efficiency for all compounds approaches 100 percent due to multiple collisions. The collection efficiency decreases, however, due to scattering.

Overall CID efficiency

The product of the collection efficiency and the fragmentation efficiency. The overall CID efficiency exhibits a maximum with an intermediate pressure. As the pressure is increased beyond the optimum value, more and more collisions take place, the probability of scattering increases, and fewer and fewer ions pass through the collision cell. This results in the collection efficiency decreasing. The fragmentation efficiency also decreases as the pressure is decreased from its optimum value, because fewer and fewer collisions take place.

Quadrupole Offset Voltage

The quadrupole offset voltage is a dc potential applied to the quadrupole rods in addition to the ramping dc voltage. The offset voltage applied to the two rod pairs of the assemblies is equal in magnitude and equal in sign. The quadrupole offset voltage accelerates or decelerates ions and, therefore, sets the TKE of the ions as they enter the quadrupole rod assembly.
In general, for a given experiment, the mass spectrometer has fixed offset voltages for Q1 and Q2. However, in MS/MS experiments, the quadrupole offset voltage applied to Q3 usually varies as a scan proceeds. The mass spectrometer automatically computes the Q3 quadrupole offset voltage necessary and then varies the voltage, as appropriate, as each scan proceeds.

The offset voltage applied to Q2 (which contains the collision cell) is responsible for the collision energy. The collision energy is the difference in potential between the ion source (where parent ions are formed) and Q2 (where they collide with collision gas). As the offset voltage on Q2 increases, the TKE of the parent ions also increases. As a result, increases in the Q2 offset voltage increase the energy of ion/Ar collisions. The collision energy is usually ramped downward with m/z to promote the fragmentation of low mass ions.

Before obtaining any mass spectra, the mass spectrometer tunes Q1 in the Q1MS scan mode (Q2 and Q3 rf voltage only), and tunes Q3 in the Q3MS scan mode (Q1 and Q2 rf voltage only). During tuning, the mass spectrometer determines the optimum quadrupole offset voltage for Q1 and for Q3.

Mass Analyzer Lenses

The TSQ Quantum XLS and TSQ Quantum GC mass analyzers have three lens sets. See Figure 21 on page 34. Those between Q1 and Q2 are designated L21, L22, L23; those between Q2 and Q3 are designated L31, L32, L33; and the lens between Q3 and the ion detection system is designated as L4 (or exit lens). All of the lenses have circular holes in their centers through which the ion beam passes.

The lens assemblies also retain the three rod assemblies to ensure accurate and automatic axial alignment of the rod assemblies.

The L2x lens set (between Q1 and Q2) and the L3x lens set (between Q2 and Q3) serve these functions:

- To minimize the amount of collision gas that enters the mass analyzers (Q1 and Q3) from the collision cell (Q2). Lenses L22 and L21 on one side of Q2 and lenses L32 and L33 on the other side of Q2 act as baffles. (For high-mass transmission, it is important to maintain a low pressure in the mass analyzers.)

- To retain the collision gas. Lenses L23 and L3 form two of the walls of the collision cell, so they tend to hold the collision gas in the collision cell. The collision gas escapes, however, through the same lens holes through which the ion beam passes.

- To shield Q1 from the rf voltage applied to Q2 and vice versa (L2x lens set) and to shield Q3 from the rf voltage applied to Q2 and vice versa (L3x lens set).

- To focus the ion beam. The three lenses between Q1 and Q2 (and those between Q2 and Q3) together form a three-element aperture lens. The first and third lenses are generally set to similar or identical values and the central lens is set to a value different (either higher or lower) from the other two.
The voltage applied to each of the lenses can vary from about -300 to +300 V. Typically, however, the voltage applied to the first and third elements of the L2x lens set is somewhat greater than the quadrupole offset voltage applied to Q1. Because the Q1 quadrupole offset voltage is generally set to about ±5 V (depending on the charge of the ions of interest), the voltage applied to lenses L21 and L23 is typically about -10 V for positive ions and +10 V for negative ions. The voltage applied to the central lens of the L2x lens set is typically about ±225 V.

In the Q3MS scan mode, the voltage applied to the lenses of the L3x lens set is about the same as that applied to the corresponding lens in the L2x lens set. Note, however, that in the MS/MS scan modes, the voltage applied to the L3x lens set automatically varies with the quadrupole offset voltage applied to Q3. As the Q3 quadrupole offset voltage ramps, the voltages applied to the lenses ramp correspondingly.

Lens L4 is located between Q3 and the ion detection system. L4 is held at ground potential. Its purpose is to shield Q3 from the high voltage applied to the ion detection system and to shield the ion detection system from the high rf voltages applied to Q3.

Ion Detection System

The TSQ Quantum XLS and TSQ Quantum GC mass spectrometers are equipped with a high-sensitivity, off-axis ion detection system. See Figure 24. This system produces a high signal-to-noise ratio and allows for voltage polarity switching between positive ion and negative ion modes of operation. The ion detection system includes a 15 kV conversion dynode and a channel electron multiplier. The ion detection system is located at the rear of the vacuum manifold behind the mass analyzer.

The conversion dynode is a concave metal surface located at a right angle to the ion beam. The mass spectrometer applies to the conversion dynode a potential of +15 kV for negative ion detection or -15 kV for positive ion detection. When an ion strikes the surface of the conversion dynode, one or more secondary particles are produced. These secondary particles can include positive ions, negative ions, electrons, and neutrals. When positive ions strike a negatively charged conversion dynode, the secondary particles of interest are negative ions and electrons. When negative ions strike a positively charged conversion dynode, the secondary particles of interest are positive ions. The curved surface of the conversion dynode focuses these secondary particles and a voltage gradient accelerates the particles into the electron multiplier.

The electron multiplier includes a cathode and an anode. The cathode of the electron multiplier is a lead-oxide, funnel-like resistor. The high voltage ring applies a potential of up to -2.5 kV to the cathode. The exit end of the cathode (at the anode) is near ground potential.

The anode of the electron multiplier is a small cup located at the exit end of the cathode. The anode collects the electrons produced by the cathode. The anode screws into the anode feedthrough in the base plate.
Secondary particles from the conversion dynode strike the inner walls of the electron multiplier cathode with sufficient energy to eject electrons. The ejected electrons are accelerated farther into the cathode, drawn by the increasingly positive potential gradient. The funnel shape of the cathode causes the ejected electrons not to travel far before they again strike the inner surface of the cathode, which causes the emission of more electrons. A cascade of electrons is then created that finally results in a measurable current at the end of the cathode where the anode collects the electrons. The current collected by the anode is proportional to the number of secondary particles striking the cathode.

Typically, the electron multiplier is set to a gain of about \(3 \times 10^5\) (that is, for each ion or electron that enters, \(3 \times 10^5\) electrons exit) in MS mode and \(2 \times 10^6\) in MS/MS mode. The electrometer circuit converts the current that leaves the electron multiplier via the anode to a voltage and the data system records the voltage.

The ion detection system of the mass spectrometer increases signal and decreases noise. The high voltage applied to the conversion dynode results in a high conversion efficiency and increased signal. That is, for each ion striking the conversion dynode, many secondary particles are produced. The increase in conversion efficiency is more pronounced for more massive ions than it is for less massive ions.

Because of the off-axis orientation of the ion detection system relative to the mass analyzer, neutral molecules from the mass analyzer tend not to strike the conversion dynode or electron multiplier. As a result, noise from neutral molecules is reduced.
Vacuum System and Inlet Gasses Hardware

The vacuum system evacuates the region around the ion source, ion optics, mass analyzer, and ion detection system. The principal components of the vacuum system include the following:

- Vacuum Manifold
- Turbomolecular Pump
- Forepump
- Convectron Gauges
- Ion Gauges

The inlet gasses hardware controls the flow of collision gas, CI reagent gas, calibration compound, and air (during venting) into the mass spectrometer. The inlet gasses hardware includes the following components:

- Vent Valve
- Collision Gas Flow Control Valves
- Calibration Compound and CI Reagent Gas Flow Control

Figure shows a functional block diagram of the vacuum system and inlet gasses hardware.
Vacuum Manifold

The vacuum manifold encloses the ion source, ion optics, mass analyzer, and ion detection system assemblies. The vacuum manifold is a thick-walled, aluminum chamber with two removable side cover plates, with openings on the front, sides, and top, and various electrical feedthroughs and gas inlets.

The main vacuum manifold is divided into two chambers by a baffle. See Figure 26. The high vacuum port of the turbomolecular pump evacuates the region inside the first chamber, called the analyzer region, to less than 10^{-5} Torr. The turbomolecular pump then discharges into the forepump through the foreline.

The region inside the second chamber, called the Q0 quadrupole region, is evacuated to 1 mTorr by the interstage port of the turbomolecular vacuum pump.

A second vacuum manifold houses the ion source, which is open to the Q0 quadrupole chamber. The interstage port of the turbomolecular pump evacuates the ion source region.
When CID is turned on, the collision cell chamber, inside the analyzer chamber, has a user controlled argon pressure of between 1 and 4 mTorr. The forepump evacuates the argon in the collision cell when CID is turned off.

Two removable side cover plates on the left side of the vacuum manifold allow access to the Q0 ion optics, mass analyzer, and ion detection system. Two electrically conductive O-rings provide a vacuum-tight seal between the side cover plates and the vacuum manifold.
Turbomolecular Pump

A Leybold TW220/150/15S double-inlet turbomolecular pump provides the vacuum for the ion source, Q0 quadrupole region, and analyzer region of the vacuum manifold. The turbomolecular pump mounts onto the top of the vacuum manifold (Figure 26).

The turbomolecular pump has two pumping inlets:

- A high-vacuum inlet at the top of the rotor stack, which evacuates the analyzer chamber
- An interstage inlet about halfway down the rotor stack, which evacuates the ion source and Q0 quadrupole chambers

The turbomolecular pump is controlled by a Leybold TDS controller and powered by a +24 V dc (250 W) power supply. The mass spectrometer circuit breaker switch and the vacuum service switch, but not the electronics service switch, turn power for the turbomolecular pump on and off. A fan draws air in from the front of the instrument cools the pump.

Power to the turbomolecular pump shuts off if the foreline pressure, as measured by the Convectron gauge, is too high, or if the turbomolecular temperature is too high.

Forepump

An Edwards E2M30 forepump (or roughing pump) establishes the vacuum necessary for the proper operation of the turbomolecular pump. The forepump also evacuates the inlet valve and the collision cell. The pump has a maximum displacement of 650 L/min and maintains a minimum pressure of approximately 1 Pa (0.01 Torr).

The forepump is connected to the turbomolecular pump by a section of reinforced PVC tubing. The power cord of the forepump is plugged into the outlet labeled Forepump on the power panel (see Figure 12 on page 25). This outlet supplies power to the pump and is controlled by the main power circuit breaker switch and vacuum service switch, not by the electronics service switch.

CAUTION Always plug the forepump power cord into the outlets labeled Forepump on the right side power panel of the mass spectrometer. Never plug it directly into a wall outlet.
Convectron Gauges

A Convectron™ gauge measures the pressure in the inlet valve and the foreline, which connects the turbomolecular pump and the forepump. A second Convectron gauge measures the pressure of argon collision gas in the collision cell.

The Convectron gauge uses a Wheatstone bridge with a temperature dependent resistor to measure pressure down to a fraction of a milliTorr. The voltage present at the top of the bridge depends on how fast the resistor can radiate heat, which is related to the pressure. The pressure measured by the Convectron gauge is monitored by vacuum protection circuitry on the Source PCB, which in turn is monitored by the embedded computer on the System Control PCB. The vacuum protection circuitry detects whether the foreline pressure is too high for the proper operation of the turbomolecular pump.

Ion Gauges

A Granville-Phillips® 342™ mini ion gauge measures the pressures in the analyzer region of the vacuum manifold and the Q0/ion source region. The ion gauge produces energetic electrons that cause the ionization of molecules in the ion gauge. Positive ions formed in the ion gauge are attracted to a collector. The collector current is related to the pressure in the vacuum manifold. The ion gauge is also involved in vacuum protection.

Vent Valve

The vent valve, located in the area of Q2, allows the vacuum manifold to be vented to air that has been filtered through a sintered nylon filter. The vent valve is a solenoid-operated valve, which is controlled by the Vent Delay PCB. When the solenoid is energized, the vent valve closes. If the power fails or the main power circuit breaker is placed in the Off (O) position, a 4-farad capacitor located in the Power Entry Module keeps the solenoid in the closed position for several minutes. If power is not restored in this time, then the solenoid opens and the system is vented with filtered air. The vent valve closes after power is restored to the mass spectrometer.

Collision Gas Flow Control Valves

The collision gas flow control valves control the flow of argon collision gas into and out of the Q2 collision cell. A solenoid valve acts to shut off argon gas flow to the cell. The collision gas pressure is regulated by a proportional valve that is controlled by the data system. You can set the collision gas pressure (0 to 5 milliTorr) in the Define Scan dialog box of the EZ Tune window.

Ions enter the Q2 collision cell, collide with the argon collision gas, and then, because of the collision, dissociate into smaller fragments. See “Collision Cell and CID Efficiency” on page 36.

Argon enters the mass spectrometer through a 1/8 in. port on the left side of the mass spectrometer.
A second proportional valve allows the forepump to evacuate the Q2 collision cell of argon and waste gases when CID is turned off. The mass spectrometer automatically opens and closes the collision gas evacuation valve, depending on whether Q2 is acting as an ion transmission device or a collision cell.

Calibration Compound and CI Reagent Gas Flow Control

The calibration compound gas flow control valve controls the flow of calibration compound gas into the ion source, via the transfer line. The calibration gas flow can be either high or low. Normally low flow is used, but high flow might be necessary for negative ion CI calibration.

The CI gas flow control valve controls the flow of chemical ionization reagent gas into the ion source, via the transfer line. The maximum CI gas flow rate is about 4 mL/min, depending on the gas.

Electronic Assemblies

The electronic assemblies that control the operation of the mass spectrometer are distributed among various PCBs and other modules located in the tower, in the embedded computer, and on or around the vacuum manifold of the mass spectrometer.

The Power Entry Module provides mass spectrometer power control, a contact closure interface, vent valve control, an Ethernet 100 base-T connection from the System Control PCB to the data system PC, a mechanical pump failure protection circuit (linked to vent valve control), a system reset button, status LEDs, and service ports. The right-side power panel, shown in Figure 12 on page 25, is part of the Power Entry Module.

The Power Entry Module accepts line power, filters it, and provides it to various components of the mass spectrometer. The Power Module includes the following components:

- Main power circuit breaker switch
- Surge suppressor
- Line filter
- Electronics service switch
- Vacuum service switch

The “brains” of the TSQ Quantum XLS and TSQ Quantum GC mass spectrometers are the System Control PCB. The System Control PCB and embedded computer include the following:

- PowerPC processor
- Serial Peripheral Interconnect (SPI) bus
- I/O coprocessor
- Super Harvard Architecture Computer (Sharc) bus
- Scan generator DSP
- Acquisition processor DSP
- Interbus bridge
- 100 base-T Ethernet port

The rf voltage generation electronic assemblies produce the Q0, Q1, Q2, and Q3 rf voltages that enable ion transmission and mass analysis. All rf voltages are controlled by the Analyzer Control PCB and the System Control PCB.

The Q1 and Q3 rf voltage amplifier circuits are identical, and the circuits for Q0 and Q2 are similar.

The rf voltage generation electronic assemblies include the following components:
- rf oscillator
- rf Voltage Amplifier PCB
- Low Pass Filter PCB
- rf voltage coil
- rf voltage detector
- Mass DAC
- Integrating amplifier

The ion detection system electronic assemblies provide high voltage to the electron multiplier and conversion dynode of the ion detection system. They also receive the electron multiplier output current signal, convert it to a voltage (by the electrometer circuit), and pass it to the embedded computer.

The ion detection system electronic assemblies include the following:
- Electron multiplier power supply
- Conversion dynode power supply
- Electrometer PCB
- Acquisition DSP

The Analyzer Control PCB contains circuitry for controlling and monitoring the operation of the ion source, ion optics, mass analyzer, and ion detection system. These circuits are in turn monitored by the PowerPC processor of the System Control PCB via the SPI bus.

The Analyzer Control PCB controls and monitors the rf voltages for Q0, Q1, Q2, and Q3 quadrupoles. It also has lens voltage drivers that convert ±330 V dc power from the DC Rod Driver PCB to dc voltages that are applied to the lenses.
Data System

The data system controls and monitors the TSQ Quantum XLS and TSQ Quantum GC mass spectrometers. The data system also processes data that the mass spectrometer acquires. The data system is composed of the following:

- Computer Hardware
- Data System / Mass Spectrometer / GC Interface
- Data System / Local Area Network Interface

Computer Hardware

The data system computer has the following major features:

- Intel® Pentium® IV processor
- High capacity hard disk drive
- Recordable/rewriteable CD drive
- Primary Ethernet port (data system to mass spectrometer)
- Secondary Ethernet port (data system to local area network)
- High performance video graphics card
- CDRW drive
- DVD drive
- 1280×1024 resolution color monitor
- Keyboard and mouse

For more information about the computer, refer to the appropriate manuals.

Data System / Mass Spectrometer / GC Interface

The data system computer contains a 100 base-T Ethernet adapter (called the primary Ethernet adapter) that is dedicated to data system/mass spectrometer/GC communications. This primary Ethernet adapter communicates with the mass spectrometer and GC modules via a 10/100 base-T Ethernet switch. The Ethernet adapter on the mass spectrometer resides on the System Control PCB. A twisted pair, Ethernet cable connects the primary Ethernet adapter of the data system to the Ethernet switch, which is connected to the Ethernet connector on the power panel of the mass spectrometer and to the GC.
Data System / Local Area Network Interface

The data system computer contains a secondary Ethernet adapter. This secondary Ethernet adapter is not involved in data system/mass spectrometer or GC communications. You can use this secondary Ethernet adapter to access your local area network.
System Shutdown, Startup, and Reset

Many maintenance procedures for the TSQ Quantum XLS and TSQ Quantum GC systems require that the mass spectrometer be shut down completely. In addition, you can place the mass spectrometer in Standby mode if the system is not to be used for 12 hours or more.

Contents

• Shutting Down the System in an Emergency
• Placing the System in Standby Mode
• Shutting Down the System Completely
• Starting Up the System after a Complete Shutdown
• Resetting the Mass Spectrometer
• Resetting the Data System
• Turning Off Selected Mass Spectrometer Components

Shutting Down the System in an Emergency

You can turn off all power to the mass spectrometer, gas chromatograph, and autosampler by pressing the System Power Off button, located on the front of the electronics module, or the main power circuit breaker, located on the rear of the electronics module. You can turn on the system power only with the main power circuit breaker on the rear of the electronics module and not the System Power Off switch.

❖ To turn off the mass spectrometer in an emergency

CAUTION Press the System Power Off button located on the front of the electronics module. See Figure 27. The System Power Off button turns off all power to the mass spectrometer (including the vacuum pumps), gas chromatograph, and autosampler. Although removing power abruptly does no harm to any component within the system, under normal conditions do not shut down the system with the System Power Off button. For the recommended procedure, see “Shutting Down the System Completely” on page 53.
Placing the System in Standby Mode

If you are not going to use the TSQ Quantum XLS or TSQ Quantum GC system for a short period of time, such as overnight or over weekends, it does not need to be shut down completely. When you are not going to operate the system for 12 hours or more, you can leave the system in standby mode.

To place the TSQ Quantum XLS or TSQ Quantum GC system in standby mode

1. Wait until data acquisition, if any, is complete.
2. From the TSQ EZ Tune window, choose Control > Standby (or click the On/Standby button) to put the mass spectrometer in standby.
When you choose Control > Standby, the TSQ Quantum XLS or TSQ Quantum GC system turns off the electron multiplier, the conversion dynode, the ion source filament and lenses (but not the heater), and the mass analyzer and ion optics rf voltages. See Table 4 on page 60 for the On/Off status of mass spectrometer components when the mass spectrometer is in standby mode. The System LED on the front panel of the mass spectrometer illuminates yellow when the system is in standby.

3. Leave the mass spectrometer power on.
4. Leave the GC power on with column flow.
5. Leave the autosampler power on.
6. Leave the data system power on.

Shutting Down the System Completely

Shut down the TSQ Quantum XLS or TSQ Quantum GC system completely only if it is to be unused for an extended period or if it must be shut down for a maintenance or service procedure. For a short period of time, such as overnight or over weekends, you can place the system in standby mode. See “Placing the System in Standby Mode.”

> **To shut down the TSQ Quantum XLS or TSQ Quantum GC system completely**

1. Cool the GC, transfer line, and ion source:
 - GC oven **30 °C**
 - Injector **off**
 - Transfer line **off**
 - Ion source **30 °C**

 Note If you do not plan to change the column or perform maintenance on the gas chromatograph, you do not have to lower the injector temperature.

2. From the TSQ EZ Tune window, choose Control > Standby (or click the On/Standby button) to put the mass spectrometer in standby.

3. Place the electronics service switch, located on the right-side power panel, in the Service Mode.
4. Place the vacuum service switch, located on the right-side power panel, in the Service Mode position.

5. Place the mass spectrometer main power circuit breaker switch, located on the right-side power panel, in the Off position. When you place the main power circuit breaker switch in the Off position, the following occurs:

 - All power to the mass spectrometer is turned off. (All LEDs on the front panel of the mass spectrometer are off.)
 - A capacitor on the Vent Delay PCB provides power to the vent valve for two to four minutes (to allow the turbomolecular pump to spin down). After the capacitor discharges, power to the vent valve solenoid shuts off. When power to the vent valve solenoid shuts off, the vent valve opens and the vacuum manifold vents to filtered air. You can hear a hissing sound as the air passes through the air filter.
 - After about two minutes, the pressure of the vacuum manifold reaches atmospheric pressure.

6. Unplug the power cord for the mass spectrometer.

CAUTION Allow heated components to cool before servicing them.
Starting Up the System after a Complete Shutdown

Starting the TSQ Quantum XLS or TSQ Quantum GC system after it has been shut down completely requires the following:

- Restoring Power to the TSQ Quantum XLS or TSQ Quantum GC system
- Starting Up the GC
- Starting Up the Data System
- Starting Up the Mass Spectrometer
- Starting Up the Autosampler (autosampler is optional)
- Setting Up Conditions for Operation

CAUTION Burn Hazard. The ion source, GC oven, injector, and transfer line are hot. Allow them to cool to room temperature before touching them.
Restoring Power to the TSQ Quantum XLS or TSQ Quantum GC system

To restore power to the TSQ Quantum XLS or TSQ Quantum GC system

Place the main power circuit breaker, located on the rear of the electronics module (Figure 28), in the On position.

Starting Up the GC

To start the GC

Follow the startup procedure described in the manual that came with the GC. Verify that the gas chromatograph is on and there is carrier gas flowing through the column into the mass spectrometer.

Starting Up the Data System

To start the data system

1. Turn on the monitor, computer, and printer.
2. Observe the Windows startup procedure on the monitor and press CONTROL+ALT+DELETE when you are prompted to do so. To complete the startup procedure, click OK or enter your password (if you have one) in the Logon Information dialog box.

Starting Up the Mass Spectrometer

To start the mass spectrometer

CAUTION If you turn on the mass spectrometer without column flow, air can damage the GC column. This large air leak into the TSQ Quantum GC also causes the ion source to require cleaning.

1. Turn on the flow of argon at the tank if it is off.

IMPORTANT The data system must be running before you start the mass spectrometer. The mass spectrometer will not operate until it receives software from the data system.

2. Make sure that the mass spectrometer main power circuit breaker switch, located on the right side power panel (Figure 29), is in the Off (O) position and the electronics service switch and the vacuum service switch are both in the Service Mode position.
3. Plug in the power cord for the mass spectrometer.

4. Place the mass spectrometer main power circuit breaker switch in the On (\(\text{\textdagger}\)) position. When you place the main power circuit breaker switch in the On (\(\text{\textdagger}\)) position, power is supplied to those mass spectrometer components that are not affected by the vacuum service switch and the electronics service switch.

5. Place the vacuum service switch in the Operational position.

6. Place the electronics service switch in the Operational position. When you place the electronics service switch in the Operational position, the following occurs:

 - The Power LED on the mass spectrometer front panel illuminates green to indicate that power is provided to the mass spectrometer electronics. (The electron multiplier, conversion dynode, ion source, and mass analyzer and ion optics rf voltages remain off.)

 - The embedded computer reboots. After several seconds the Communication LED on the front panel illuminates yellow to indicate that the data system and the mass spectrometer have started to establish a communication link.

 - After several more seconds, the Communication LED illuminates green to indicate that the data system and the mass spectrometer have established a communication link. Software for the operation of the mass spectrometer is then transferred from the data system to the mass spectrometer.

 - After three minutes, the System LED illuminates yellow to indicate that the software transfer from the data system to the mass spectrometer is complete and that the instrument is in standby.

 - The Vacuum LED on the front panel of the mass spectrometer remains off until the turbomolecular pump reaches 80 percent of its operational speed of 750 Hz. At this time the ion gauge is turned on and the Vacuum LED illuminates yellow. The Vacuum LED illuminates green, and the high voltage can be turned on, only if the pressure in the mass analyzer region of the vacuum manifold is less than the appropriate value listed in Table 3.

Table 3: Maximum allowed pressure to turn on high voltage

<table>
<thead>
<tr>
<th>Carrier gas</th>
<th>Ar collision gas</th>
<th>Maximum pressure (Torr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>Off</td>
<td>(6 \times 10^{-6})</td>
</tr>
<tr>
<td>He</td>
<td>On</td>
<td>(5 \times 10^{-5})</td>
</tr>
<tr>
<td>H(_2)</td>
<td>Off</td>
<td>(5 \times 10^{-5})</td>
</tr>
<tr>
<td>H(_2)</td>
<td>On</td>
<td>(1 \times 10^{-4})</td>
</tr>
</tbody>
</table>
Starting Up the System after a Complete Shutdown

Starting Up the Autosampler

- To start the autosampler

 Place the main power switch on the autosampler in the On position. If necessary, configure the autosampler. For procedures for placing sample vials, preparing solvent and waste bottles, installing syringes, and so on, refer to the manual that came with the autosampler.

Setting Up Conditions for Operation

- To set up your TSQ Quantum XLS or TSQ Quantum GC mass spectrometer for operation

 1. Before you begin data acquisition with your TSQ Quantum XLS system, allow the system to pump down for at least one hour. Operation of the system with excessive air and water in the vacuum manifold can cause reduced sensitivity, tuning problems, and reduced lifetime of the electron multiplier.

 2. Ensure that the argon pressure is within the operational limits [argon: 135 ± 70 kPa (20 ± 10 psig)].

 Note Air in the argon line must be purged or given sufficient time to be purged for normal TSQ Quantum XLS mass spectrometer performance.

 3. In the TSQ EZ Tune window, choose View > Instrument Status. Look at the Status view. Check that the pressure measured by the ion gauge is below about 3 × 10⁻⁶ Torr (2 × 10⁻⁵ Torr with H₂ carrier gas) with the collision gas turned off.

 Note You do not need to calibrate and tune the mass spectrometer each time you restart the TSQ Quantum XLS or TSQ Quantum GC system. To tune and calibrate the mass spectrometer, see Chapter 4, “Tuning and Calibrating.”
Resetting the Mass Spectrometer

If communication between the mass spectrometer and data system computer is lost, it might be necessary to reset the mass spectrometer using the System Reset button on the right-side power panel. Pressing the System Reset button creates an interrupt in the embedded computer. This causes the embedded computer to restart in a known (default) state. See Figure 29 on page 54 for the location of the System Reset button.

The procedure given here assumes that the mass spectrometer and data system computer are both powered on and operational. If the mass spectrometer, data system computer, or both are off, go to “Starting Up the System after a Complete Shutdown” on page 55.

❖ To reset the mass spectrometer

Press the System Reset button located on the right-side power panel. Make sure the Communication LED is extinguished before releasing the System Reset button. When you press the Reset button, the following occurs:

- An interrupt on the embedded computer causes the CPU to reboot. All LEDs on the front panel of the mass spectrometer are off except the Power LED.
- After several seconds, the Communication LED illuminates yellow to indicate that the data system and the mass spectrometer are starting to establish a communication link.
- After several more seconds, the Communication LED illuminates green to indicate that the data system and the mass spectrometer have established a communication link. Software for the operation of the mass spectrometer is then transferred from the data system to the mass spectrometer.
- After three minutes the software transfer is complete. The System LED illuminates either green to indicate that the instrument is functional and the high voltages are on, or yellow to indicate that the instrument is functional, and it is in standby.

Resetting the Data System

If possible, use the Windows shutdown and restart procedure to shut down and restart the data system so that Windows can properly close programs and save changes to files.

❖ To reset the data system by using the Windows shutdown and restart procedure

2. Select Restart and click OK to start the Windows shutdown and restart procedure.
3. Observe the Windows shutdown and restart procedure on the monitor. Press CTRL+ALT+DELETE when you are prompted to do so. To complete the shutdown and
restart procedure, click OK or enter your password (if you have one) in the Logon Information dialog box.

Note The communications link between the data system and the mass spectrometer should automatically reestablish after you reset the data system. When this occurs the Communication LED on the front panel of the mass spectrometer illuminates yellow and then green. If the system is unable to reestablish the communications link, press the System Reset button on the power panel of the mass spectrometer.

Turning Off Selected Mass Spectrometer Components

There are different ways that you can turn off some or all of the mass spectrometer components:

- Turn off individual mass spectrometer components from the TSQ EZ Tune window. Turning off individual mass spectrometer components might be necessary when you are troubleshooting or when you are running certain diagnostic procedures.

- Place the mass spectrometer in Standby mode. Standby is the normal condition to leave the mass spectrometer in when it is not in use. Choose **Control > Standby** (or toggle the On/Standby button) from the TSQ EZ Tune window to place the mass spectrometer in standby.

- Place the mass spectrometer in the Off condition. The Off condition is similar to Standby, except all high voltage components of the mass spectrometer are turned off. Choose **Control > Off** from the TSQ EZ Tune window to place the mass spectrometer in the Off condition.

- Place the electronics service switch in the Service Mode position. The electronics service switch turns off all components in the mass spectrometer other than the +24 V power supply, forepump, turbomolecular pump, Vent Delay PCB, and fans.

- Place the vacuum service switch in the Service Mode position. The vacuum service switch turns off all vacuum system components, including the +24 V power supply, forepump, turbomolecular pump, Vent Delay PCB, and fans.

- Place the right-side power panel circuit breaker switch in the Off position. Placing the right-side power panel circuit breaker switch in the Off position removes all power to the mass spectrometer, including the vacuum system.

- Press the System Power Off button. Pressing the System Power Off button removes all power to the mass spectrometer, gas chromatograph, and autosampler.

Table 4 summarizes the on/off status of mass spectrometer components, voltages, and gas flows.
Table 4. On/Off status of mass spectrometer components and voltages (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Mass spectrometer component</th>
<th>Standby</th>
<th>Off</th>
<th>Electronics service switch in Service Mode position</th>
<th>Vacuum service switch in Service Mode position</th>
<th>MS Main power circuit breaker switch in Off position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron multiplier</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Conversion dynode</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Mass analyzer rf voltage</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Mass analyzer dc offset voltage</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Q0 ion optics rf voltage</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Q0 ion optics dc offset voltage</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Ion source filament</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Ion source heater</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Ion source lenses</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Argon collision gas</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Vent valve</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
<td>Open (after 2 to 4 min)</td>
<td>Open (after 2 to 4 min)</td>
</tr>
<tr>
<td>Turbomolecular pump</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Forepump</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Vent Delay PCB</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Embedded computer</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Turbomolecular pump controller</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Power supply, electron multiplier and conversion dynode</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Power supply, 8 kV</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>PS1 power supply, +24 V</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>PS2 power supply, +5, ±15, ±24 V dc</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>PS3 power supply, +36, -28 V dc</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Fan, turbomolecular pump</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Fan, above manifold</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Fan, center wall</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Convectron gauge, foreline</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Convectron gauge, collision cell</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>
Table 4. On/Off status of mass spectrometer components and voltages (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Mass spectrometer component</th>
<th>Standby</th>
<th>Off</th>
<th>Electronics service switch in Service Mode position</th>
<th>Vacuum service switch in Service Mode position</th>
<th>MS Main power circuit breaker switch in Off position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion gauge</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>
Tuning and Calibrating

Tune parameters are instrument parameters that affect the intensity of the ion signal. Calibration parameters are instrument parameters that affect the mass accuracy and resolution of the mass spectrum. Tuning and calibrating the TSQ Quantum XLS or TSQ Quantum GC mass spectrometer automatically with TSQ EZ Tune uses perfluorotributylamine (FC-43) as the tuning and calibration compound. FC-43 resides in a vial inside the mass spectrometer.

Record the ion signal intensity of FC-43 (see Figure 32) just after you tune and calibrate the mass spectrometer. Periodically check the FC-43 ion signal. Re-tune and calibrate the mass spectrometer if the FC-43 ion signal falls below 50% of the tuned value. Also, re-tune and calibrate after switching between EI and CI modes or between positive and negative polarity modes.

Table 5 lists typical peaks that are observed in the FC-43 mass spectrum in EI, positive polarity mode.

Note: You may need to calibrate more often if you operate in H-SRM mode (as opposed to SRM mode only).
Displaying the FC-43 Mass Spectrum

The first step in tuning and calibrating the mass spectrometer is to display the FC-43 mass spectrum.

To display the FC-43 mass spectrum

1. Choose Start > All Programs > Thermo Instruments > TSQ > TSQ Tune to open the EZ Tune window.
2. Choose a polarity mode. In this example the mass spectrometer is in positive polarity mode. If necessary, toggle the polarity button.

 Note For EI negative polarity mode, you might have to set the calibration gas flow to high.

3. Click the Define Scan button to display the Define Scan dialog box.
4. In the Define Scan dialog box, select or enter the following settings:
 - Scan type: **Full Scan**
 - Scan mode: **Q1MS**
 - Scan range entry mode: **FM/LM**
• First mass: 50
• Last mass: 650
• Scan time: 0.500

Figure 31. Define Scan dialog box

5. Click **Apply** to apply the settings.

6. Click the **Calibration Gas** button in the EZ Tune toolbar to turn on the flow of calibration gas into the ion source.

7. Click the **Filament** button in the EZ Tune toolbar to turn on the filament.

8. Choose **Control > On** to start the mass spectrometer scanning.

9. Observe the mass spectrum. If your mass spectrum looks very different from the one in **Figure 32**, see “Diagnostics and Troubleshooting” on page 129.
4 Tuning and Calibrating
Running Auto Tune and Calibration

Figure 32. EZ Tune - EZ Workspace, showing the FC-43 mass spectrum in EI, positive polarity mode before tuning and calibrating.

Running Auto Tune and Calibration

Run the tune and calibration procedure after you obtain a good FC-43 ion signal.

✦ To tune and calibrate your mass spectrometer automatically in the EI, positive ion mode

1. Display the FC-43 positive ion mass spectrum as described in the previous section.

2. Click the System Tune and Calibration button (or choose Setup > System Tune and Calibration) to display the System Tune and Calibration dialog box.
3. In the Compound list, select **FC43 pos. ions**. This automatically selects the positively charged FC-43 ions to be used for automatic tuning and calibrating.

4. Select **Tune A** as the tune algorithm.

 Note Tune A is the first choice of tune algorithm if there is a regular EI or CI ion volume installed in the ion source. Tune B is the first choice of tune algorithm if there is a closed EI ion volume installed.

5. Click **Start** to start the automatic tuning and calibration procedure.

 The Status box displays real-time messages about the system tune and calibration so that you can monitor the progress of each sub-procedure. After a sub-procedure is complete, the result is reported (for example, whether it passed or failed). At the end of the entire procedure, it displays a summary.

 - If errors occur during the automatic tuning and calibration procedure, go to step 6.
 - If the automatic tuning and calibration procedure finishes without errors, go to step 7.

6. If errors occur during the automatic tuning and calibration procedure, restore the previous mass spectrometer device settings and perform the tuning and calibration procedure again by completing the following steps:
 a. To restore the prior tuning and calibration settings, click **Undo**.
 b. To reload the prior tuning and calibration settings to the mass spectrometer, click **Accept**.
 c. Troubleshoot and correct the problem that caused the tuning and calibration procedure to fail. See “Tuning Issues” on page 143.
 d. Go to step 5 and restart the tuning and calibration procedure.
7. Click **Accept** to accept the results of the tuning and calibration procedure.

After you accept the results of the tuning and calibration procedure, a message box asks whether you want to copy the positive ion tuning and calibration settings to the negative ion mode.

- If you have already tuned and calibrated the instrument successfully in the negative ion mode, click **No**. (Do not copy the positive ion mode parameters to the negative ion mode.)

- If you have not tuned and calibrated the instrument in the negative ion mode, click **Yes**.

Note If you intend to perform high-sensitivity, negative-ion mass spectrum analysis, Thermo Fisher Scientific recommends that you also perform a full tune and calibration of the instrument in the negative ion mode.

8. Save the calibration file as follows:
 a. Click **Save Calib. As** to open the Save Calibration File dialog box.
 b. In the File Name box, enter a name for your calibration file.
c. Click **Save** to save the calibration file. The Save As dialog box appears.

9. Save the tune method file as follows:
 a. In the File Name box, enter a name for your tune method file.
 b. Click **Save** to save the tune method file.

The mass spectrometer is now tuned and calibrated in the positive ion mode.

Saving the Tune and Calibration Report

You can save the information that appears in the Status box and in the parameter optimization plots as a PDF file. Examples of status information and parameter optimization plots from the tune and calibration report follow.
Figure 35. Tune and calibration report, status page

Results from System Tune and Calibration using FC43 Pos. Ions:

Q1 and Q3 Tuning & Calibrating

10:55:29: Tuning and Calibrating Q1
10:55:39: Tuning Q1MS at mass 69.00 m/z
10:55:41: Opening resolution
10:55:42: Adjusting resolution
10:56:02: The adjusted resolution is -13.33 at the width 0.78
10:56:07: The adjusted calibration of mass 69.0 is -0.88
10:56:08: Averaging Stopping Curve...
10:56:12: Q1 Quadrupole Offset set to -0.85 for all reswidths
10:56:20: Previous Setting = -7.00, New Setting = -0.80
10:56:20: Maximum Intensity = 1.04e+06
10:56:20: 322 % Improvement
10:56:20: Optimizing Lens 2 for ion 69.00 m/z
10:56:26: Previous Setting = -10.00, New Setting = -0.86
10:56:26: Maximum Intensity = 1.61e+06
10:56:26: 60 % Improvement
10:56:26: Optimizing Lens 4 for ion 69.00 m/z
10:56:32: Previous Setting = -5.00, New Setting = -0.86
10:56:32: Maximum Intensity = 1.93e+06
10:56:32: 15 % Improvement
10:56:32: Optimizing Lens 1-1 for ion 69.00 m/z
10:56:38: Previous Setting = -21.90, New Setting = -5.00
10:56:38: Maximum Intensity = 2.43e+06
10:56:38: 41 % Improvement
10:56:38: Optimizing Lens 2-1 for ion 69.00 m/z
10:56:45: Previous Setting = -8.45, New Setting = 3.92
10:56:45: Maximum Intensity = 2.56e+06
10:56:45: 17 % Improvement
10:56:45: Tuning Q1MS at mass 501.97 m/z
10:56:47: Opening resolution
10:56:48: Adjusting resolution
10:57:04: The adjusted resolution is -14.38 at the width 0.78
10:57:04: Coarse resolution done - Quick calibration
10:57:10: The adjusted calibration of mass 502.0 is -0.16
10:57:11: Averaging Stopping Curve...
10:57:16: Q1 Quadrupole Offset set to -2.00 for all reswidths
10:57:18: Optimizing Lens 2 for ion 501.97 m/z
10:57:24: Previous Setting = -7.00, New Setting = -2.70
10:57:24: Maximum Intensity = 2.97e+05
10:57:24: 223 % Improvement
10:57:24: Optimizing Lens 1-2 for ion 501.97 m/z
10:57:30: Previous Setting = -50.14, New Setting = -51.11
10:57:30: Maximum Intensity = 4.35e+05
10:57:30: 6 % Improvement
10:57:30: Optimizing Lens 2-1 for ion 501.97 m/z

Signature: __
To save the tune and calibration report

1. In the System Tune and Calibration dialog box, click **Save Report**. The Save As dialog box appears.

2. Enter the name and the path of the report, and click **Save**.
Changing Ionization Modes

You can operate the TSQ Quantum XLS and TSQ Quantum GC mass spectrometers in either EI or CI ionization mode. Changing ionization modes requires changing ion volumes. It is not necessary to shut down the mass spectrometer to change ion volumes.

The following sections describe how to change the ionization mode.

Contents
- Removing the Ion Volume
- Installing the Ion Volume

Removing the Ion Volume

Tools Needed
- Gloves, clean, lint- and powder-free
- Insert/removal (I/R) tool and guide bar

Frequency
When you change ionization modes or as needed to clean the ion volume

 développed

To remove the ion volume

1. Install the guide bar.
 a. With the guide ball track facing left, insert the guide bar into the entry housing. See Figure 37.
 b. Push the guide bar in as far as it will go; then rotate it 90° clockwise to lock the guide bar in the entry housing.
2. Prepare the inlet valve and I/R tool for insertion.

 a. Make sure the inlet valve is closed. Figure 38 shows the inlet valve lever is down for closed.

 b. Loosen the inlet valve knob counter-clockwise and remove the inlet valve plug. The inlet valve plug prevents air from entering the vacuum manifold in case the inlet valve is inadvertently opened.

 c. Turn the I/R tool to the unlock position (), which indicates the I/R tool is in position to accept the ion volume.
3. Choose Start > All Programs > Thermo Instruments > TSQ > TSQ Tune to open the EZ Tune window.

4. Click the **Probe** button in the EZ Tune toolbar. The Insert Probe message appears (Figure 39).

Figure 39. Insert Probe message

![Instrument Messages]

- Insert probe and tighten seal. Click OK to proceed or Cancel to abort operation.
5. Insert the I/R tool into the inlet valve.
 a. Insert the guide ball into the guide ball hole.
 b. Slide the I/R tool forward into the inlet valve until the guide ball is at the guide bar’s first stop (see Figure 40).
 c. Tighten the inlet valve knob clockwise to ensure a leak-tight seal.

Figure 40. I/R tool at the first stop on guide bar and the inlet valve knob tightened
6. Click **OK**. The forepump evacuates the inlet valve. Wait until the safe to insert probe message appears, and then click **OK**.

Figure 41. Safe to insert the probe message

7. Once evacuation is complete, pull the inlet valve lever up to open the inlet valve.

Figure 42. I/R tool at first stop and inlet valve lever up
8. Remove the ion volume.
 a. Slide the I/R tool into the vacuum manifold until the tip of the I/R tool is fully inserted into the ion volume holder. The head of the arrow on the I/R tool (Figure 44), when viewed through the window of the ion source manifold, should not be visible.

 b. Turn the I/R tool handle counterclockwise to put the I/R tool into lock position. Listen for a click, which indicates that the handle is fully engaged in the lock position and is holding the ion volume.

 c. Withdraw the I/R tool (with the ion volume attached) until the guide ball reaches the first stop (see Figure 42).

 d. Pull the lever down to close the inlet valve.
e. Loosen the inlet valve knob by turning it counterclockwise to release the seal.

f. Continue withdrawing the I/R tool completely from the inlet valve by sliding the I/R tool through the guide ball track in the guide bar.

CAUTION Do not withdraw the I/R tool beyond the point where the guide ball reaches the first stop in the guide bar. Close the inlet valve first. Otherwise, the system vents to the atmosphere.

9. Remove the ion volume from the I/R tool. See Figure 44.

a. Wearing clean gloves, press the ion volume forward into the tip of the I/R tool and rotate it to disconnect the bayonet pins from the pin guides.

b. Pull the ion volume out of the I/R tool.

Figure 44. Ion volume, ion volume holder, and I/R tool

CAUTION Because the ion volume might be too hot to touch, let it cool to room temperature before handling it.

10. To clean the ion volume, use the instructions in “Cleaning Stainless Steel Parts” on page 113. If you are cleaning a CI ion volume, be sure to clean out the small electron entrance hole. Aluminum oxide can get trapped in this hole, which can adversely affect sensitivity. Use a dental pick or old syringe needle to clean the hole.
Installing the Ion Volume

You install an ion volume after cleaning or to change ionization modes.

To install the ion volume

- **Note** Wear clean, lint- and powder-free gloves when you handle a clean ion volume.

1. Place the clean ion volume on the I/R tool with the arrows aligned. See Figure 44.

 - **CAUTION** Make sure the arrows on the I/R tool and ion volume are aligned to avoid damage to the ion source.

2. Turn the I/R tool handle to the lock position.

3. Install the guide bar.

 a. With the guide ball track facing left, insert the guide bar into the entry housing (see Figure 37).

 b. Push the guide bar in as far as it will go, and then rotate it 90° clockwise to lock the guide bar in the entry housing.

4. Prepare the inlet valve for insertion.

 a. Make sure the inlet valve is closed. Figure 38 shows the inlet valve lever is down for closed.

 b. Loosen the inlet valve knob counter-clockwise and remove the inlet valve plug. Remove the inlet valve plug. The inlet valve plug prevents air from entering the vacuum manifold in case the inlet valve is inadvertently opened.

5. Choose Start > All Programs > Thermo Instruments > TSQ > TSQ Tune to open the EZ Tune window.

6. Click the **Probe** button in the EZ Tune toolbar. The Insert Probe message appears. See Figure 39.

7. Insert the I/R tool into the inlet valve.

 a. Insert the guide ball into the guide ball hole.

 b. Slide the I/R tool forward into the inlet valve until the guide ball is at the guide bar’s first stop. See Figure 40.

 c. Tighten the inlet valve knob clockwise to ensure a leak-tight seal.

8. Click **OK**. The forepump evacuates the inlet valve. Wait for the safe to insert probe message to appear (Figure 41); then click **OK**.

9. Once evacuation is complete, pull the inlet valve lever up to open the inlet valve.
10. Install the ion volume.
 a. Slide the I/R tool and ion volume assembly into the vacuum manifold until the ion volume assembly is fully inserted and seated into the ion source block. Listen for a click, which indicates that the ion volume has connected with the ion source block.
 b. Turn the I/R tool handle to the unlock position to release the ion volume from the I/R tool.

 Figure 45. Ion volume seated in the ion source block

11. Verify that the ion volume is fully seated in the ion source block:

 - Withdraw the I/R tool away from the ion volume about 2.5 cm (1 in.), and turn the I/R tool handle to the lock position.
 - Slide the I/R tool back into the vacuum manifold until the end of the I/R tool just touches the ion volume.
 - Test that the I/R tool does not go into the inlet valve completely, which indicates that the ion volume is seated properly.

12. Remove the I/R tool.
 a. Withdraw the I/R tool until the guide ball reaches the first stop (see Figure 42).
 b. Close the inlet valve by pulling the inlet valve lever down (see Figure 40).
 c. Loosen the inlet valve knob by turning it counter-clockwise.
 d. Continue withdrawing the I/R tool completely from the inlet valve by sliding the I/R tool through the guide ball track in the guide bar.

 CAUTION Do not withdraw the I/R tool beyond the point where the guide ball reaches the first stop in the guide bar. Close the inlet valve first. Otherwise, the system vents to the atmosphere.

13. Remove the guide bar by rotating it 90° counter-clockwise and sliding it out of the entry housing.
14. Replace the inlet valve plug. Orient the plug to indicate whether an EI or CI ion volume is installed.

15. Tighten the inlet valve knob clockwise to create a leak-tight seal.

16. (Optional) To prevent the inlet valve from being opened accidentally, pull free and remove the inlet valve lever.
This chapter describes routine maintenance procedures that you must perform to ensure optimum performance of the TSQ Quantum XLS or TSQ Quantum GC mass spectrometer. Optimum performance of the mass spectrometer depends on the maintenance of all parts of the instrument. You are responsible for maintaining your instrument properly by performing the maintenance procedures on a regular basis.

Note When you perform maintenance procedures, be methodical; always wear clean, lint-free gloves when handling the components of the ion source; always place the components on a clean, lint-free surface; and never overtighten a screw or use excessive force.

Table 6 lists routine and infrequent mass spectrometer maintenance procedures. For instructions on maintaining the GC or autosampler, refer to the manuals that come with the GC or autosampler.

Table 6. Maintenance procedures (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Mass spectrometer component</th>
<th>Procedure</th>
<th>Frequency</th>
<th>Procedure location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion source</td>
<td>Cleaning the ion volume</td>
<td>As needed*</td>
<td>Page 87</td>
</tr>
<tr>
<td>Ion source</td>
<td>Cleaning the lenses</td>
<td>As needed*</td>
<td>Page 88 (TSQ Quantum XLS), page 95 (TSQ Quantum GC)</td>
</tr>
<tr>
<td>Ion source</td>
<td>Cleaning the entire ion source</td>
<td>As needed*</td>
<td>Page 107 (TSQ Quantum XLS), page 110 (TSQ Quantum GC)</td>
</tr>
<tr>
<td>Ion source</td>
<td>Replacing the filament</td>
<td>If the filament fails</td>
<td>Page 102 (TSQ Quantum XLS), page 105 (TSQ Quantum GC)</td>
</tr>
<tr>
<td>Inlet valve</td>
<td>Replacing the ball valve seal</td>
<td>If there is an air leak in the inlet valve</td>
<td>Page 120</td>
</tr>
<tr>
<td>Calibration compound</td>
<td>Adding calibration compound</td>
<td>If EZ Tune error message indicates low intensity of calibration gas ions</td>
<td>Page 117</td>
</tr>
</tbody>
</table>
Table 6. Maintenance procedures (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Mass spectrometer component</th>
<th>Procedure</th>
<th>Frequency</th>
<th>Procedure location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas chromatograph</td>
<td>Replacing the capillary column</td>
<td>If chromatographic separation is bad or if a different stationary phase is needed for the application</td>
<td>Page 122</td>
</tr>
<tr>
<td>Q0 ion optics</td>
<td>Cleaning the Q0 quadrupole and L11 and L12 lenses**</td>
<td>As needed*</td>
<td></td>
</tr>
<tr>
<td>Mass analyzer</td>
<td>Cleaning the Q1, Q2, and Q3 quadrupoles and lenses**</td>
<td>As needed*</td>
<td></td>
</tr>
<tr>
<td>Forepump</td>
<td>Purging the forepump pump oil</td>
<td>If pump oil is cloudy</td>
<td>Manufacturer’s documentation</td>
</tr>
<tr>
<td>Forepump</td>
<td>Adding pump oil</td>
<td>If pump oil level is low</td>
<td>Manufacturer’s documentation</td>
</tr>
<tr>
<td>Forepump</td>
<td>Changing the pump oil</td>
<td>Every 4 months or if pump oil is cloudy and discolored</td>
<td>Manufacturer’s documentation</td>
</tr>
<tr>
<td>Ion detection system</td>
<td>Replacing the electron multiplier assembly**</td>
<td>If noise in spectrum is excessive or proper electron multiplier gain cannot be achieved</td>
<td></td>
</tr>
<tr>
<td>Electronic modules</td>
<td>Replacing an electronic module**</td>
<td>If electronic module fails</td>
<td></td>
</tr>
<tr>
<td>PCBs</td>
<td>Replacing a PCB**</td>
<td>If PCB fails</td>
<td></td>
</tr>
</tbody>
</table>

*The frequency of cleaning the components of the mass spectrometer depends on the types and amounts of samples and solvents that are introduced into the instrument. Cleaning of the Q0, Q1, Q2, and Q3 quadrupoles is rarely (if ever) required.

**A Thermo Fisher Scientific Field Service Engineer must perform this maintenance procedure.
Cleaning Ion Source Components

An important part of maintaining your TSQ Quantum XLS or TSQ Quantum GC mass spectrometer is making sure that the ion source components are clean. Follow the cleaning procedures in this section to clean stainless steel and non-stainless steel parts.

When your mass spectrometer is clean and in good working order, perform benchmark tests and record the results. When the tested performance of your system decreases significantly from your benchmark test results, clean the ion volume. If this does not restore performance, clean the lenses.

How often you clean the ion source depends on the types and amounts of samples and solvents you introduce into the system. In general, the closer a component is to the sample introduction point, the more rapidly the component becomes dirty. For example, you clean the ion volume more often than other parts. If you just want to change or clean the ion volumes, you do not need to shut down the system.

Most parts can be removed and disassembled by hand. Make sure you have all the tools needed before starting each procedure.

Figure 46 shows an exploded view of the ion source assembly.
Figure 46. Ion source assembly of the TSQ Quantum XLS, exploded and assembled views
Figure 47. Ion source assembly of the TSQ Quantum GC, exploded and assembled views
6 Maintenance
Cleaning Ion Source Components

Cleaning Ion Volumes

You do not need to vent the mass spectrometer to atmosphere to clean the ion volume.

❖ To clean the ion volume

1. Remove the ion volume. See “Removing the Ion Volume” on page 73.

 CAUTION Burn Hazard. The ion volume might be hot. Allow the ion volume to cool to room temperature before touching it.

2. Clean the ion volume. See “Cleaning Stainless Steel Parts” on page 113. If you are cleaning a CI ion volume, be sure to clean out the small electron entrance hole. Aluminum oxide can get trapped in this hole, which can adversely affect sensitivity. Use a dental pick or old syringe needle to clean the hole.

3. Reinstall the ion volume. See “Installing the Ion Volume” on page 80.

Cleaning Lenses of the TSQ Quantum XLS Ion Source

If cleaning the ion volume does not restore system performance, clean the ion source lenses.

❖ To clean the ion source lenses

1. Shut down and vent the system. See “Shutting Down the System Completely” on page 53.

 CAUTION Shock Hazard. Unplug the TSQ Quantum XLS mass spectrometer before proceeding.

 CAUTION Burn Hazard. The ion source might be hot. Allow the ion source to cool to room temperature before touching it.

2. Remove the ion source. See “Removing the TSQ Quantum XLS Ion Source” on page 89.

3. Remove the ion source lens assemblies from the ion source and disassemble it. See “Removing the L1, L2, L3 Lens Assembly and the Q00 Quadrupole Lens Assembly” on page 91.

4. Clean the lenses and the spacers. See “Cleaning Stainless Steel Parts” on page 113 and “Cleaning Non-Stainless Steel or Hybrid Part” on page 115, respectively.

5. Reassemble L1, L2, L3 lens assembly and install it and the Q00 quadrupole onto the ion source. See “Reassembling the L1, L2, L3 Lens Assembly” on page 93.
6. Reinstall the ion source into the mass spectrometer. See “Reinstalling the TSQ Quantum XLS Ion Source” on page 94.

7. Restart the system. See “Starting Up the System after a Complete Shutdown” on page 55.

Removing the TSQ Quantum XLS Ion Source

Remove the ion source to clean the lenses or replace the filament.

Tools Needed
- Gloves, cleanroom grade (P/N 23827-0008 and 23827-0009)
- Lint-free cloth

Frequency
As needed to perform ion source maintenance

To remove the ion source

CAUTION Do not remove the ion source without first pulling back the GC capillary column, or else the capillary column might break.

1. Shut down and vent the TSQ Quantum XLS mass spectrometer. See “Shutting Down the System Completely” on page 53.

CAUTION Shock Hazard. Unplug the TSQ Quantum XLS mass spectrometer before proceeding.

2. Pull back the capillary column.
 a. Lower the oven, injector, and transfer line temperatures to 30 °C and allow them to cool before continuing.

 CAUTION Burn Hazard. The GC oven, injector, and transfer line are hot. Allow them to cool to room temperature before touching them.

 b. Once the oven, injector, and transfer line are cool, turn off the gas chromatograph.
 c. Loosen the transfer line nut. See Figure 64 on page 123.
 d. Pull back the column. (You can first mark the column’s position with white out or something similar.)

3. Prepare a clean work area by covering the area with lint-free cloth.
4. Undo the two latches that secure the lid of the ion source vacuum manifold, and open the lid.

5. Disconnect the connectors from the lead pins at the EI/CI Source PCB, and L1, L2, L3 lens assembly.

Figure 48. TSQ Quantum XLS ion source, installed

CAUTION Burn Hazard. The ion source might be hot. Allow the ion source to cool to room temperature before touching it.

Note Wear clean, lint- and powder-free gloves when you handle the ion source.

6. While holding the ion source assembly, loosen the two thumbscrews that secure the ion source assembly to the Q0 quadrupole mount.

7. Pull the ion source assembly away from the Q0 quadrupole mount and 2 mm to the right to clear the transfer line bellows.

8. Slide the ion source off the magnet yoke.
9. Place the ion source and magnet yoke on a clean, lint-free cloth.

10. Close the lid of the ion source vacuum manifold.

Removing the L1, L2, L3 Lens Assembly and the Q00 Quadrupole Lens Assembly

The ion source includes the L1, L2, L3 lens assembly and the Q00 quadrupole lens assembly. You must remove and disassemble the L1, L2, L3 lens assembly to clean the lenses. A retainer clip fastens the L1, L2, L3 lens assembly and the Q00 quadrupole lens assembly to the ion source block.

To remove the ion source lens assemblies

1. Wearing clean, lint- and powder-free gloves, unscrew the threaded hexagonal standoff and remove the retainer clip that secures the lens assembly to the ion source block. See Figure 49.

2. Remove the Q00 quadrupole lens assembly and the L1, L2, L3 lens assembly from the heater cartridges of the ion source. Place them on a clean surface.
Figure 49. L1, L2, L3 lens assembly and Q00 quadrupole lens assembly removed from the ion source

Disassembling the L1, L2, L3 Lens Assembly

To disassemble the L1, L2, L3 lens assembly

1. Remove the lens retainer clip by pinching the ends with your fingers or a pair of tweezers. See Figure 50.

2. Remove the lenses and spacers from the lens holder.

3. Place the components on a clean surface.
Figure 50. L1, L2, L3 lens assembly, exploded and assembled views

Reassembling the L1, L2, L3 Lens Assembly

Ensure that the lenses are clean and dry before you reassemble the lens assembly.

Note: To clean the ion source lenses, follow the procedure in “Cleaning Stainless Steel Parts” on page 113. To clean the remaining parts, follow the procedure in “Cleaning Non-Stainless Steel or Hybrid Part” on page 115.
To reassemble the L1, L2, L3 lens assembly

1. Wearing clean, lint- and powder- free gloves, reinstall the lenses and spacers in the lens holder in the order and orientation shown in Figure 50, starting with lens L3.

2. Reinstall the lens clip by pinching the ends with your fingers or a pair of tweezers and seating it in the lens holder.

3. Insert the lens alignment tool (in the TSQ Quantum XLS Accessory Kit) into the lens assembly and align the lenses.

Reinstalling the Ion Source Lens Assemblies

To reinstall the ion source lens assemblies onto the ion source

1. Wearing clean, lint- and powder- free gloves, insert the three heater cartridges of the ion source through their corresponding holes in the L1, L2, L3 lens assembly. See Figure 49.

2. Insert the three heater cartridges of the ion source through their corresponding holes in the Q00 quadrupole lens assembly. Verify the correct orientation of the guide pin hole and the retainer clip groove on the Q00 quadrupole lens assembly.

3. Use the retainer clip and threaded standoff to secure the lens assemblies to the ion source.

IMPORTANT For accurate temperature readings of the heater block, fully screw the threaded standoff into the ion source to ensure contact between the temperature sensor with the heater block.

Reinstalling the TSQ Quantum XLS Ion Source

To reinstall the ion source into the vacuum manifold

1. Wearing clean, lint- and powder- free gloves, place the ion source onto the magnet yoke.

2. Position the ion source in the vacuum manifold and ensure the following:
 - The transfer line is seated in the sample inlet aperture in the ion source.
 - The guide pin on the Q0 quadrupole mount inserts into the guide pin groove on the Q00 lens assembly.
 - The two thumbscrews are aligned with the screw holes in the Q0 quadrupole mount. See Figure 48.

3. Secure the ion source to the Q0 quadrupole mount by alternately tightening each thumbscrew one-half turn at a time. Make sure there is no play in the ion source.

4. Align and reconnect the 8-pin connector to the lead pins on the EI/CI Source PCB. See Figure 48.

5. Align the 3-pin connector such that the side with the beveled edge is closest to the L3 lead pin and the side with the rounded corners is closest to the L1 lead pin.
6. Reconnect the 3-pin connector to the lead pins on the L1, L2, and L3 lenses. See Figure 48.

7. Reinsert the capillary column into the ion source.
 a. Using the I/R tool, remove the ion volume. See “Removing the Ion Volume” on page 73.
 b. Push the capillary column in until you can see it in the ion source.
 c. Pull the column back just far enough that you cannot see it.
 d. Tighten the transfer line nut and transfer line union.
 e. Using the I/R tool, install the ion volume. See “Installing the Ion Volume” on page 80.

8. Close and secure the cover to the ion source vacuum manifold.

Cleaning the Lenses of the TSQ Quantum GC Ion Source

If cleaning the ion volume does not restore system performance, clean the ion source lenses.

Note Lens L4 requires cleaning less often than lens L1, L2, and L3.

❖ To clean the ion source lenses

1. Shut down and vent the system. See “Shutting Down the System Completely” on page 49.

 CAUTION Shock Hazard. Unplug the TSQ Quantum GC before proceeding.

 CAUTION Burn Hazard. The ion source might be hot. Allow the ion source to cool to room temperature before touching it.

2. Remove the ion source. See “Removing the TSQ Quantum XLS Ion Source” on page 89.

3. Remove the ion source lens assembly from the ion source and disassemble it. See “Removing the L1, L2, L3 Lens Assembly and the Q00 Quadrupole Lens Assembly” on page 91.

4. Clean the lenses and the spacers. See “Cleaning Stainless Steel Parts” on page 113 and “Cleaning Non-Stainless Steel or Hybrid Part” on page 115, respectively.

5. Reassemble the ion source lens assembly and install it onto the ion source. See “Reassembling the L1, L2, L3 Lens Assembly” on page 93.
6. Reinstall the ion source into the mass spectrometer. See “Reinstalling the TSQ Quantum XLS Ion Source” on page 94.

7. Restart the system. See “Starting Up the System after a Complete Shutdown” on page 51.

Removing the TSQ Quantum GC Ion Source

Remove the ion source to clean the lenses or replace the filament.

Tools Needed
- Gloves, cleanroom grade (P/N 23827-0008 and 23827-0009)
- Lint-free cloth

Frequency
As needed to perform ion source maintenance

To remove the ion source

CAUTION Do not remove the ion source without first pulling back the capillary column, or else the capillary column might break.

1. Shut down and vent the TSQ Quantum GC mass spectrometer. See “Shutting Down the System Completely” on page 49.

CAUTION Shock Hazard. Unplug the TSQ Quantum GC mass spectrometer before proceeding.

2. Pull back the capillary column.
 a. Lower the oven, injector, and transfer line temperatures to 30 °C and allow them to cool before continuing.

CAUTION Burn Hazard. The GC oven, injector, and transfer line are hot. Allow them to cool to room temperature before touching them.

 b. Once the oven, injector, and transfer line are cool, turn off the gas chromatograph.
 c. Loosen the transfer line nut. See Figure 64 on page 123.
 d. Pull back the column. (You can first mark the column’s position with white out or something similar.)

3. Prepare a clean work area by covering the area with lint-free cloth.

4. Undo the two latches that secure the lid of the ion source vacuum manifold, and open the lid.
5. Disconnect the connectors from the lead pins at the EI/CI Source PCB, lens L1, L2, L3 assembly, and lens L4 assembly. See Figure 48.

Figure 51. TSQ Quantum GC ion source, installed

CAUTION Burn Hazard. The ion source might be hot. Allow the ion source to cool to room temperature before touching it.

Note Wear clean, lint- and powder- free gloves when you handle the ion source.

6. While holding the ion source assembly, loosen the two thumbscrews that secure the ion source assembly to the Q0 quadrupole.

7. Pull the ion source assembly away from the Q0 quadrupole and 2 mm to the right to clear the transfer line bellows.

8. Slide the ion source off the magnet yoke.

9. Place the ion source and magnet yoke on a clean, lint-free cloth.
10. Close the lid of the ion source vacuum manifold.

Removing the Ion Source Lens Assembly

The ion source lens assembly includes lens L1, L2, L3, and L4. You must remove and disassemble the ion source lens assembly to clean the lenses. A retainer clip fastens the lens assembly to the ion source block.

To remove the ion source lens assembly

1. Wearing clean, lint- and powder-free gloves, unscrew the threaded hexagonal standoff and remove the retainer clip that secures the lens assembly to the ion source block. See Figure.

2. Pull the lens assembly out of the ion source.

3. Place the ion source and lens assembly on a clean surface.

Figure 52. Lens assembly removed from the ion source

Disassembling the Ion Source Lens Assembly

To disassemble the lens assembly

1. Pull the L1, L2, L3 lens assembly from the L4 lens assembly.

Diagram of lens assembly, ion source, retainer clip, and standoff.
2. Disassemble the L1, L2, L3 lens assembly.
 a. Remove the lens clip by pinching the ends with your fingers or a pair of tweezers.
 b. Remove the lenses and spacers from the lens holder.
 c. Place the components on a clean surface.
3. Disassemble the L4 lens assembly.
 a. Remove the lens clip by pinching the ends with your fingers or a pair of tweezers.
 b. Remove the lens L4 from the lens holder.
 c. Place the components on a clean surface.
Reassembling the Ion Source Lens Assembly

Ensure that the lenses are clean and dry before you reassemble the lens assembly.

✧ **To reassemble the ion source lens assembly**

1. Wearing clean, lint- and powder- free gloves, reassemble the L4 lens assembly.
 a. Insert lens L4 into the lens holder. See Figure 55.
 b. Install the lens clip by pinching the ends with your fingers or a pair of tweezers. Seat the lens clip in the lens holder.

2. Reassemble the L1, L2, L3 lens assembly. See Figure 54.
 a. Reinstall the lenses and spacers in the lens holder in the order and orientation shown in Figure 54.
 b. Reinstall the lens clip by pinching the ends with your fingers or a pair of tweezers and seating it in the lens holder.
 c. Insert the lens alignment tool (in the TSQ Quantum GC Accessory Kit) into the lens assembly and align the lenses

3. Insert the L4 lens assembly into the L1, L2, L3 lens assembly. Align the lead pins. See Figure 53.

Reinstalling the Ion Source Lens Assembly

✧ **To reinstall the ion source lens assembly onto the ion source**

1. Wearing clean, lint- and powder- free gloves, insert the lens assembly into the ion source. See Figure 53.
2. Use the retainer clip and threaded standoff to secure the lens assembly to the ion source. See Figure.

IMPORTANT For accurate temperature readings of the heater block, fully screw the threaded standoff into the ion source to ensure contact between the temperature sensor with the heater block.

Reinstalling the Ion Source

- **To reinstall the ion source into the vacuum manifold**
 1. Wearing clean, lint- and powder-free gloves, place the ion source onto the magnet yoke.
 2. Position the ion source in the vacuum manifold and ensure the following:
 - The transfer line is seated in the sample inlet aperture in the ion source.
 - The two thumbscrews are aligned with the screw holes in the Q0 quadrupole mount. See Figure 48.
 3. Secure the ion source to the Q0 quadrupole mount by alternately tightening each thumbscrew one-half turn at a time. Make sure there is no play in the ion source.
 4. Reconnect the connectors to the lead pins on the EI/CI Source PCB, lens L1, L2, L3 assembly (the orientation is not important), and lens L4 assembly. See Figure 48.
 5. Reinsert the capillary column into the ion source.
 a. Using the I/R tool, remove the ion volume. See “Removing the Ion Volume” on page 69.
 b. Push the column in until you can see it through the inlet valve.
 c. Pull the column back just far enough that you cannot see it.
 d. Tighten the transfer line nut and transfer line union.
 e. Using the I/R tool, install the ion volume. See “Installing the Ion Volume” on page 76.
 6. Close and secure the cover to the ion source vacuum manifold.

Replacing the Filament of the TSQ Quantum XLS Ion Source

The number of ions produced in the ion source is approximately proportional to the filament emission current. If ion production is lacking, you might have to replace the filament. If the measured emission current is substantially less than the value that the emission current is set to, or if the measured emission current decreases over time, then the filament has failed or is failing and requires replacement.
6 Maintenance

Replacing the Filament of the TSQ Quantum XLS Ion Source

See Figure 46 on page 86 and Figure 56 on page 104 for the location of the ion source components.

Tools Needed
- Filament (P/N 120320-0030)
- Gloves, cleanroom grade (P/N 23827-0008 and 23827-0009)
- Lint-free cloth

Frequency
If filament fails

❖ To replace the ion source filament

1. Prepare a clean work area by covering the area with lint-free cloth.

2. Shut down and vent the TSQ Quantum XLS mass spectrometer. See “Shutting Down the System Completely” on page 53.

 CAUTION Shock Hazard. Unplug the TSQ Quantum XLS mass spectrometer before proceeding.

3. Remove the ion source. See “Removing the TSQ Quantum XLS Ion Source” on page 89.

4. Wearing clean, lint- and powder-free gloves, remove the ion source from the magnet yoke.
5. Unscrew the threaded standoff and remove the retainer clip that secures the heater ring and lens assemblies to the ion source block. See Figure 56.

6. Pull the heater ring and lens assemblies off of the cartridge heaters on the ion source block. Place them on a clean surface.

7. Remove the retainer clip that secures the filament and centering ring to the ion source block.

8. Remove the filament and centering ring from the ion source block.

Note Now is a good time to clean the ion source block and lenses. Use the procedure described in “Cleaning Stainless Steel Parts” on page 113 to clean the ion source block and lenses.

9. Inspect and install a new filament (P/N 120320-0030, in the TSQ Quantum XLS Accessory Kit).
 a. Verify that the filament wire is centered in the electron lens hole.
 b. Insert the filament into the centering ring.
c. Align the filament leads with the EI/CI Source PCB connectors and gently press the leads into the connectors. Normally, there is a small gap (about 0.016 in.) between the filament and the connectors. The gap allows the ceramic centering ring to properly position and align the electron lens hole with the ion volume.

d. Secure the filament and centering ring with the retainer clip.

10. Press the heater ring and lens assemblies onto the cartridge heaters on the ion source block.

11. Use the retainer clip and threaded standoff to secure the lens assemblies to the ion source.

IMPORTANT For accurate temperature readings of the heater block, fully screw the threaded standoff into the ion source to ensure contact between the temperature sensor with the heater block.

12. Reinstall the ion source onto the magnet yoke.

13. Reinstall the ion source into the vacuum manifold. See “Reinstalling the TSQ Quantum XLS Ion Source” on page 94.

Restart the system. See “Starting Up the System after a Complete Shutdown” on page 55.

Replacing the Filament of the TSQ Quantum GC Ion Source

The number of ions produced in the ion source is approximately proportional to the filament emission current. If ion production is lacking, you might have to replace the filament. If the measured emission current is substantially less than the value that the emission current is set to, or if the measured emission current decreases over time, then the filament has failed or is failing and requires replacement.

See Figure 46 on page 86 and Figure 56 on page 104 for the location of the ion source components. To replace the ion source filament

Tools Needed

- Filament (P/N 120320-0030)
- Gloves, cleanroom grade (P/N 23827-0008 and 23827-0009)
- Lint-free cloth

Frequency

If filament fails

1. Prepare a clean work area by covering the area with lint-free cloth.
2. Shut down and vent the TSQ Quantum GC. See “Shutting Down the System Completely” on page 49.

CAUTION Shock Hazard. Unplug the TSQ Quantum GC before proceeding.

3. Remove the ion source. See “Removing the TSQ Quantum GC Ion Source” on page 96.

4. Wearing clean, lint- and powder-free gloves, remove the ion source from the magnet yoke.

Figure 57. Disassembling the ion source to replace the filament

5. Unscrew the threaded standoff and remove the retainer clip that secures the heater ring and lens assembly to the ion source block. See Figure 56.

6. Pull the heater ring and lens assembly out of the ion source block.

7. Remove the retainer clip that secures the filament and centering ring to the ion source block.
8. Remove the filament and centering ring from the ion source block.

Note Now is a good time to clean the ion source block. Use the procedure described in “Cleaning Stainless Steel Parts” on page 113 to clean the ion source block.

9. Inspect and install a new filament (P/N 120320-0030, in the TSQ Quantum GC Accessory Kit).
 a. Verify that the filament wire is centered in the electron lens hole.
 b. Insert the filament into the centering ring.
 c. Seat the filament on the EI/CI Source PCB.
 d. Secure the filament with the retainer clip.

10. Press the heater ring and lens assembly onto the ion source block.

11. Use the retainer clip and threaded standoff to secure the lens assembly to the ion source. See Figure 56.

IMPORTANT For accurate temperature readings of the heater block, fully screw the threaded standoff into the ion source to ensure contact between the temperature sensor with the heater block.

12. Reinstall the ion source onto the magnet yoke.

13. Reinstall the ion source into the vacuum manifold. See “Reinstalling the TSQ Quantum XLS Ion Source” on page 94.

14. Restart the system. See “Starting Up the System after a Complete Shutdown” on page 51.

Disassembling and Reassembling the TSQ Quantum XLS Ion Source Completely

Disassemble the ion source completely to clean the ion source block or to replace the EI/CI Source PCB.

See Figure 58 for the location of the ion source components.

Tools Needed
- Gloves, cleanroom grade (P/N 23827-0008 and 23827-0009)
- Lint-free cloth

Frequency
As needed

- **To disassemble the ion source completely**
 1. Prepare a clean work area by covering the area with lint-free cloth.
2. Shut down and vent the TSQ Quantum XLS. See “Shutting Down the System Completely” on page 49.

CAUTION **Shock Hazard.** Unplug the TSQ Quantum XLS mass spectrometer before proceeding.

3. Wearing clean, lint- and powder-free gloves, remove the ion source. See “Removing the TSQ Quantum XLS Ion Source” on page 89.

4. Remove the ion source from the magnet yoke.

Figure 58. TSQ Quantum XLS ion source, disassembled

5. Pull the Q00 quadrupole lens assembly and the L1, L2, L3 lens assembly off the ion source.

6. Pull the heater ring off the ion source.

7. Unscrew and remove the three base studs.
8. Remove the EI/CI Source PCB.
 a. Place the ion source on a clean surface with the cartridge heaters down and the EI/CI Source PCB up.
 b. Press down on the ion source block to separate it from the EI/CI Source PCB.

9. Remove the retainer clip that secures the filament and centering ring to the ion source block.

10. Remove the filament and centering ring from the ion source block.

11. Clean the ion source block and lenses. See “Cleaning Stainless Steel Parts” on page 113. Clean non-stainless steel parts as described in “Cleaning Non-Stainless Steel or Hybrid Part” on page 115.

To reassemble the ion source

1. Reinstall the EI/CI Source PCB and filament.
 a. Align and insert the cartridge heaters and temperature sensor on the EI/CI Source PCB with the corresponding holes in the ion source block.

 IMPORTANT Ensure that the temperature sensor is seated snugly.

 b. Reinstall the three base studs.

 c. Align the filament leads with the EI/CI Source PCB connectors and gently press the leads into the connectors. Normally, there is a small gap (about 0.016 in.) between the filament and the connectors. The gap allows the ceramic centering ring to properly position and align the electron lens hole with the ion volume.

2. Press the heater ring and lens assemblies onto the ion source block.

3. Use the retainer clip and threaded standoff to secure the lens assembly to the ion source. See Figure 58.

 IMPORTANT For accurate temperature readings of the heater block, fully screw the threaded standoff into the ion source to ensure contact between the temperature sensor with the heater block.

4. Reinstall the ion source into the vacuum manifold. See “Reinstalling the TSQ Quantum XLS Ion Source” on page 94.

5. Restart the system. See “Starting Up the System after a Complete Shutdown” on page 51.
Disassembling and Reassembling the TSQ Quantum GC Ion Source Completely

Disassemble the ion source completely to clean the ion source block or replace the EI/CI Source PCB.

See Figure 58 for the location of the ion source components.

Tools Needed

- Gloves, cleanroom grade (P/N 23827-0008 and 23827-0009)
- Lint-free cloth

Frequency

As needed

To disassemble the ion source completely

1. Prepare a clean work area by covering the area with lint-free cloth.

2. Shut down and vent the TSQ Quantum XLS. See “Shutting Down the System Completely” on page 49.

 CAUTION Shock Hazard. Unplug the TSQ Quantum XLS before proceeding.

3. Wearing clean, lint- and powder-free gloves, remove the ion source. See “Removing the TSQ Quantum XLS Ion Source” on page 89.

4. Remove the ion source from the magnet yoke.
5. Pull the lens assembly off the ion source.
6. Pull the heater ring off the ion source.
7. Unscrew and remove the three base studs.

CAUTION Shock Hazard. Do not pull the EI/CI Source PCB out of the ion source block. This might damage the EI/CI Source PCB.

8. Remove the EI/CI Source PCB.
 a. Place the ion source on a clean surface with the cartridge heaters down and the EI/CI Source PCB up.
 b. Press down on the ion source block to separate it from the EI/CI Source PCB.
9. Remove the retainer clip that secures the filament and centering ring to the ion source block.
10. Remove the filament and centering ring from the ion source block.
11. Clean the ion source block and lenses. See “Cleaning Stainless Steel Parts” on page 113. Clean non-stainless steel parts as described in “Cleaning Non-Stainless Steel or Hybrid Part” on page 115.

❖ To reassemble the ion source

1. Reinstall the EI/CI Source PCB and filament.
 a. Align and insert the cartridge heaters and temperature sensor on the EI/CI Source PCB with the corresponding holes in the ion source block.

 IMPORTANT Ensure that the temperature sensor is seated snugly.

 b. Reinstall the three base studs.

 c. Align the filament leads with the EI/CI Source PCB connectors and gently press the leads into the connectors. Normally, there is a small gap (about 0.016 in.) between the filament and the connectors. The gap allows the ceramic centering ring to properly position and align the electron lens hole with the ion volume.

2. Press the heater ring and lens assembly onto the ion source block.

3. Use the retainer clip and threaded standoff to secure the lens assembly to the ion source. See Figure 58.

 IMPORTANT For accurate temperature readings of the heater block, fully screw the threaded standoff into the ion source to ensure contact between the temperature sensor with the heater block.

4. Reinstall the ion source into the vacuum manifold. See “Reinstalling the TSQ Quantum XLS Ion Source” on page 94.

5. Restart the system. See “Starting Up the System after a Complete Shutdown” on page 51.
Cleaning Stainless Steel Parts

Tools Needed
- Acetone, reagent grade (or other suitable polar solvent)
- Aluminum oxide abrasive, number 600 (P/N 32000-60340)
- Applicators, cotton-tipped (P/N 00301-01-00015)
- Beaker, 450 mL
- Clean, dry gas
- De-ionized water
- Detergent (Alconox, Micro, or equivalent)
- Dremel rotary tool or equivalent (recommended)
- Foil, aluminum
- Forceps (P/N 76360-0400)
- Gloves, cleanroom grade (P/N 23827-0008 and 23827-0009)
- Glycerol, reagent grade
- Lint-free cloth
- Protective eyewear
- Tap water
- Toothbrush, soft
- Ultrasonic cleaner

Frequency
As needed to clean these stainless steel parts:
- Ion volumes
- Ion source block
- Ion source lenses

CAUTION Material and Eye Hazard. Wear impermeable laboratory gloves and eye protection when performing cleaning procedures.

- To clean stainless-steel parts
 1. Remove contamination from all the surfaces you are cleaning.
 a. Use a slurry of number 600 aluminum oxide in glycerol and a cleaning brush or cotton-tipped applicator. Contamination appears as dark or discolored areas, but often is not visible. The heaviest contamination is usually found around the apertures, such as the electron entrance hole on an ion volume.
 b. Clean each part thoroughly, even if no contamination is visible.
 c. To clean the inside corners, use the wooden end of an applicator cut at an angle.
 d. Use a Dremel® tool with the polishing swab at its lowest speed to increase cleaning efficiency, as well as decrease the time required to clean the items. To prevent personal injury, be sure to keep the Dremel tool away from possible hazards, such as standing water or flammable solvents.
2. Rinse the parts with clean water. Use a clean applicator or toothbrush to remove the aluminum oxide slurry. Do not let the slurry dry on the metal; dried aluminum oxide is difficult to remove.

3. Sonicate the parts in a warm detergent solution.
 a. Using forceps, place the parts in a beaker containing warm detergent solution.
 b. Place the beaker and contents in an ultrasonic bath for five minutes.
 c. Rinse the parts with tap water to remove the detergent.

4. Sonicate the parts in deionized water.
 a. Using forceps, place the parts in a beaker containing deionized water.
 b. Place the beaker and contents in an ultrasonic bath for five minutes.
 c. If the water is cloudy after sonicating, pour off the water, add fresh water, and place the beaker and its contents in an ultrasonic bath again for five minutes. Repeat until the water is clear.

5. Sonicate the parts in acetone.
 a. Using forceps, place the parts in a beaker containing acetone.
 b. Using forceps, transfer the parts to a beaker containing fresh acetone.
 c. Place the beaker and contents in an ultrasonic bath again for five minutes.

6. Blow-dry the parts immediately. Use clean, dry gas to blow the acetone off the parts.

7. Using forceps, place the parts in a beaker, cover the beaker with aluminum foil, and put the beaker in the oven.

8. Dry the parts in an oven set at 100 °C for 30 minutes.

9. Allow the parts to cool before putting them back together.

Cleaning Non-Stainless Steel or Hybrid Part

Tools Needed

- Acetone, reagent grade (or other suitable polar solvent)
- Aluminum oxide abrasive, number 600 (P/N 32000-60340)
- Applicators, cotton-tipped (P/N 00301-01-00015)
- Beaker, 450 mL
- Clean, dry gas
- De-ionized water
- Detergent (Alconox, Micro, or equivalent)
- Dremel rotary tool or equivalent (recommended)
- Forceps (P/N 76360-0400)
- Gloves, cleanroom grade (P/N 23827-0008 and 23827-0009)
- Glycerol, reagent grade
- Lint-free cloth
- Protective eyewear
- Tap water
- Toothbrush, soft

Frequency

As needed to clean non-stainless steel parts (such as aluminum, ceramic, or gold-plated), or to clean hybrid parts that are partially made of stainless steel:

- Lens holder and spacers
- Filament spacer
- Heater ring

CAUTION Material and Eye Hazard. Wear impermeable laboratory gloves and eye protection when performing cleaning procedures.

To clean non-stainless steel or hybrid parts

1. Remove contamination from stainless steel surfaces. It is only necessary to clean a surface that comes in contact with the ion beam.
 a. Use a slurry of number 600 aluminum oxide in glycerol and a cleaning brush or cotton-tipped applicator. Contamination appears as dark or discolored areas, but often is not visible.
 b. Clean each part thoroughly, even if no contamination is visible.
 c. To clean the inside corners, use the wooden end of an applicator cut at an angle.
 d. Use a Dremel tool with the polishing swab at its lowest speed to increase cleaning efficiency, as well as decrease the time required to clean the items. To prevent personal injury, be sure to keep the tool away from possible hazards, such as standing water or flammable solvents.
2. Rinse the parts with clean water. Use a clean applicator or toothbrush to remove the aluminum oxide slurry. Do not let the slurry dry on the metal; dried aluminum oxide is difficult to remove.

3. Scrub all of the parts with a warm detergent solution.
 a. Scrub the parts with a toothbrush or clean applicator. Do not soak or sonicate the parts in detergent.
 b. Using forceps, rinse the parts thoroughly with tap water to remove the detergent.

 CAUTION Do not leave aluminum parts, such as the heater ring, in the detergent. Basic solutions, like detergent, discolor aluminum.

4. Rinse the parts in deionized water. Using forceps, dip the parts in a beaker of deionized water. Change the water if it becomes cloudy. Do not soak or sonicate the parts.

5. Rinse the parts with acetone. Using forceps, dip the parts in a beaker of acetone. Change the acetone if it becomes cloudy. Do not soak or sonicate the parts.

6. Blow-dry the parts immediately. Use clean, dry gas to blow the acetone off the parts.

Maintaining the Forepump

Inspecting, adding, purging, and changing the forepump oil are all that is required to maintain the forepump.

Forepump oil is a translucent, light amber color, which you must check often. During normal operation, oil must always be visible in the oil level sight glass between the MIN and MAX marks. If the oil level is below the MIN mark, add oil. If the oil is cloudy or discolored, purge the oil to decontaminate dissolved solvents. If the pump oil is still discolored, change it. You should change the pump oil every 3000 hours (about four months) of operation. Refer to the manufacturer’s documentation for procedures for purging, adding, and changing the forepump oil.

CAUTION If you use ammonia as a chemical ionization reagent gas, change the oil every month. Ammonia is highly basic and quickly damages seals in the forepump. Purging the oil with the Gas Ballast Control helps remove dissolved ammonia from the oil.
Adding Calibration Compound

The calibration compound is a liquid whose mass spectrum of ions is used to tune and calibrate the TSQ Quantum XLS and TSQ Quantum GC mass spectrometers. The mass spectrometer uses FC-43 as its calibration compound. Although you cannot visually determine when a calibration compound needs to be added, Xcalibur Automatic Tune produces an error message indicating that “the intensity of calibration gas ions is too low.” This message indicates that calibration compound must be added. However, there are many factors other than a decrease in the calibration compound that can cause a shortage of calibration gas ions. As a rule, add calibration compound once a year.

To add calibration compound

1. Shut down and vent the mass spectrometer. See “Shutting Down the System Completely” on page 53.
2. Lower the GC oven and transfer line temperatures to 30 °C and allow them to cool before continuing.

 CAUTION The transfer line is hot. Allow it to cool to room temperature before moving the GC.

3. Move the GC far enough from the mass spectrometer to access the calibration compound vial compartment. See the location of the calibration compound vial compartment in Figure 60.
4. Remove the cover to the calibration compound vial compartment.

5. Remove the calibration compound vial from the calibration gas flow module. See Figure 61.
 a. Use a 9/16 in. wrench to remove the nut from the calibration compound vial.
 b. Slide the vial away from the calibration valve fitting with the ferrule and nut attached.
 c. Remove the ferrule and nut.

 CAUTION Having more than 0.1 mL of the calibration compound can damage
 the calibration gas flow module. Be sure that there is less than 0.1 mL of the
 calibration compound in the vial.

6. Add the calibration compound.
 a. Draw up no more than 0.1 mL of calibration compound into a clean syringe.
 b. Insert the syringe in the calibration compound vial until it comes in contact with the
 white frit at the bottom of the vial.
 c. Inject no more than 0.1 mL of calibration compound into the white frit. The frit
 absorbs the calibration compound, so if the calibration compound is pooled
 (calibrant covers the top of the frit), then you have too much in the vial. Immediately
 pour out the excess calibrant according to local environmental regulations.
7. Remove the syringe from the calibration compound vial.

Figure 61. Calibration compound vial

8. Inspect the 1/4 in. ferrule for damage. Replace it if necessary (P/N 95001-20310).

9. Reinstall the calibration compound vial (P/N 96000-40013) into the module.
 a. Hold the vial vertically and place the nut on the neck of the vial.
 b. Place the 1/4 in. ferrule over the neck of the vial and into the nut.
 c. Connect the vial to the calibration valve fitting with the nut and ferrule.

10. Reinstall the cover to the calibration compound vial compartment.

11. Position the GC next to the mass spectrometer.

12. Restart your system. See “Starting Up the System after a Complete Shutdown” on page 55.
Replacing the Ball Valve Seal

Tools Needed
- Ball valve seal kit (P/N 119265-0003)

Frequency
If the ball valve seal leaks air after you insert the direct insertion probe or I/R tool into the inlet valve and tighten the inlet valve knob.

The ball valve seal in the inlet valve can become worn over time. Replace the ball valve seal if it leaks air after you insert the direct insertion probe or I/R tool and tighten the inlet valve knob. The ball valve seal kit (P/N 119265-0003) is included in the TSQ Quantum XLS Accessory Kit.

The ball valve seal consists of a Teflon® spool and two O-rings. See Figure 62.

Figure 62. Components of the ball valve seal and inlet valve

You use the ball valve seal extraction tool (part of the ball valve seal kit, P/N 119265-0003) to remove the ball valve seal. See Figure 63.
△ To remove the ball valve seal

1. Loosen the inlet valve knob counter-clockwise until you can remove it.
2. Remove the inlet valve knob, plug, and insert.
3. Insert the not-engaged ball valve seal extraction tool into the inlet valve housing.
4. Engage the ball valve seal by pushing the plunger of the ball valve seal extraction tool forward.
5. Remove the seal and tool.
6. Pull the plunger back to disengage the seal.

Figure 63. Ball valve seal extraction tool and ball valve seal, not engaged (left) and engaged (right)

△ To install the ball valve seal

1. Obtain the ball valve seal kit (P/N 119265-0003) from the Accessory Kit.
2. Assemble the ball valve seal by installing the two O-rings onto the Teflon™ spool.
3. Insert the ball valve seal into the ball valve manifold with your finger.
4. Install the inlet valve knob and insert.
5. Install the inlet valve plug and tighten the inlet valve knob clockwise.
Removing and Installing a GC Capillary Column

You replace the GC capillary column if the chromatographic separation is bad or if it does not have the appropriate stationary phase for your application.

Tools Needed
- Gloves, cleanroom grade (P/N 23827-0008 and 23827-0009)
- Wrench, open-ended, 5/16 in.
- Wrench, open-ended, 7/16 in.
- Wrench, open-ended, 6 mm

Frequency
As needed for maintenance or column replacement

Removing a GC Capillary Column

To remove a GC capillary column

1. Shut down the TSQ Quantum XLS or TSQ Quantum GC and the gas chromatograph.
 a. Shut down and vent the mass spectrometer. See “Shutting Down the System Completely” on page 53.
 b. Lower the oven, injector, and transfer line temperatures to 30 °C and allow them to cool before continuing.
 c. Once the oven, injector, and transfer line are cool, turn off the gas chromatograph.

2. Remove the column from the transfer line. See Figure 64.
 a. Unscrew the transfer line nut.
 b. Remove the column from the transfer line.

CAUTION The oven, injector, and transfer line are hot. Allow them to cool to room temperature before touching them.
3. Remove the column from the injector. Refer to the Column chapter of the *TRACE GC Ultra Operating Manual* for instructions.
Installing a GC Capillary Column

Tools Needed
- Capillary column
- Gloves, cleanroom grade (P/N 23827-0008 and 23827-0009)
- Injector ferrule, for 0.25 mm column (P/N 290 134 88)
- Leak detector, hand-held electronic (GL Sciences, Inc., model LD-228, or equivalent)
- Lint-free tissue
- Magnifying glass
- Methanol or other suitable solvent
- Scoring wafer (or sapphire scribe) to cut capillary column
- Transfer line ferrule, 0.4 mm ID (P/N A0101-18100)
- Wrench, open-ended, 5/16 in.
- Wrench, two, open-ended, 7/16 in.
- Wrench, open-ended, 6 mm

Frequency
As needed

Refer to the *TRACE GC Ultra Operating Manual* and the *TRACE GC Ultra Maintenance and Troubleshooting Manual* for additional GC column installation information.

❖ **To install a GC capillary column**

CAUTION Burn Hazard. The injector, oven, and transfer line might be hot. Allow them to cool to room temperature before touching them.

Note Wear clean, lint- and powder-free gloves when you handle the column and injector ferrule.

1. Connect the column to the injector. Refer to the Column chapter of the *TRACE GC Ultra Operating Manual* for instructions. Refer to the *TRACE GC Ultra Quick Reference* card for the column depth length for your injector.

2. Set up the gas chromatograph.
 a. Turn on the gas chromatograph.
 b. Set the oven and injector temperatures to 30 °C.
 c. Set the injector flow to 1.0 mL/min.
 d. Turn off vacuum compensation (under the Right or Left Carrier menu).
e. Dip the column outlet in a small vial of methanol. Bubbles indicate there is flow through the column.

f. Allow the column to purge for at least 10 minutes.

4. Perform a column evaluation. Refer to the Column chapter of the TRACE GC Ultra Operating Manual for instructions. Refer to the K-Factor Quick Reference card for expected K factors for various column diameters, column lengths, and carrier gases.

 Note The K factor is a measure of the resistance of the column. A K factor that is too low might indicate a leak in the system, while a K factor that is too high might indicate a blockage.

5. Perform an automatic column leak check.

 a. Run an automatic leak check. Refer to the Column chapter of the TRACE GC Ultra Operating Manual for instructions.

 b. If the report indicates a leak, look for leaks and use the leak detector to fix leaks at all the fittings in the GC.

 c. Repeat column evaluation and leak check procedures until no leaks can be found.

 CAUTION Do not raise the oven temperature until you are sure the system is leak-free. At temperatures above 100 °C, oxygen exposure will destroy the column.

6. Condition the capillary column according to the manufacturer’s instructions. New columns must be conditioned before inserting them in the mass spectrometer.

 CAUTION Do not insert the column into the transfer line during the conditioning (column bleed) will contaminate the ion source. You must then clean the ion source.

 CAUTION Never exceed the column manufacturer’s maximum operating temperature.

7. Connect the column to the transfer line.

 a. Shut down and vent the mass spectrometer. See “Shutting Down the System Completely” on page 53.

 b. Lower the GC oven temperature to 30 °C and allow it to cool before continuing.
6 Maintenance
Removing and Installing a GC Capillary Column

CAUTION Burn Hazard. The GC oven and transfer line might be hot. Allow them to cool to room temperature before touching them. Do not touch the injector when it is hot.

c. Wearing clean, lint- and powder-free gloves, unwind about one turn of the capillary column (shown in Figure 64) from the column outlet end.

d. Wipe about 450 mm (18 in.) of the column with a tissue soaked in methanol.

Note Sliding a septum on the column before the transfer line nut helps you measure the proper distance between the nut and the end of the column. The column should extend approximately 1 to 2 mm past the end of the transfer line.

e. Insert the column through the transfer line nut and ferrule. Wipe the column again with a tissue soaked in methanol.

f. Score and break the end of the column with a scoring wafer. With the magnifying glass, check for an even, flat cut. Repeat if necessary.

g. Insert the column into the transfer line.

i. Open the lid of the ion source vacuum chamber so that you can get a better view of the column.

ii. Using the I/R tool, remove the ion volume. See “Removing the Ion Volume” on page 73.

iii. Insert the column into the transfer line and tighten the transfer line nut by hand.

iv. Push the column in until you can see it through the inlet valve.

v. Pull the column back just far enough that you cannot see it.

vi. Tighten the transfer line nut and transfer line union.

vii. Using the I/R tool, replace the ion volume. See “Installing the Ion Volume” on page 80.

8. Condition the transfer line ferrule. Graphite/Vespel™ ferrules like the transfer line ferrule require conditioning to ensure a leak-tight seal.

a. Raise the oven temperature to the maximum temperature at which you will operate the column (normally 300 °C).

b. Wait 10 minutes.

c. Lower the oven temperature to 30 °C and allow it to cool before continuing.

CAUTION The oven might be hot. Allow it to cool to room temperature before opening it. Do not touch the injector, which will still be hot.

d. Re-tighten the transfer line nut and the transfer line union.
9. Set up the gas chromatograph.
 a. Make sure the column does not have any sharp bends and that it does not touch any metal objects or walls inside the oven.
 b. Raise the oven temperature to the initial temperature that you will use (normally 40 °C).
 c. Turn on the vacuum compensation (under the Right or Left Carrier menu).
The TSQ Quantum XLS and TSQ Quantum GC system diagnostics can test many components of the TSQ Quantum XLS and TSQ Quantum GC mass spectrometers. If there is a problem with the instrument electronics, the diagnostics can often locate the problem. Replacing a faulty PCB or assembly can usually correct the problem. After the PCB or assembly is replaced, the diagnostic tests are rerun to verify the instrument is functioning properly.

TSQ Quantum XLS and TSQ Quantum GC System Diagnostics

The TSQ Quantum XLS and TSQ Quantum GC system diagnostics are used to test the major electronic circuits within the instrument and indicate whether the circuits pass or fail the tests. If there is a problem with the instrument electronics, the system diagnostics can often locate the problem.

The system diagnostics do not diagnose problems that are not electrical in nature. For example, they do not diagnose poor sensitivity due to misaligned or dirty components or to improper tuning. Therefore, it is important that the person running the diagnostics be familiar with system operation and basic hardware theory as well as the details of the diagnostics.

IMPORTANT Typically, only a Thermo Fisher Scientific Field Service Engineer runs diagnostic tests because certain tests can overwrite system parameters.

Before calling a Thermo Fisher Scientific Field Service Engineer to run diagnostics, consider the following:

- Did the system fail when you were running samples?
• Did problems occur after you performed maintenance on the instrument, data system, or peripherals?
• Did you change the configuration of the system, cables, or peripherals just before the problem occurred?

If the answer is yes to the first item above, there is the possibility of a hardware failure, and running the diagnostics is appropriate.

If the answer is yes to either of the last two questions above, the problem is probably mechanical, not electrical. Reverify that alignment, configurations, and cable connections are correct before you call the Thermo Fisher Scientific Field Service Engineer. Keep careful notes documenting the nature of the problem and the corrective steps you have taken. If you are not successful in correcting the problem, you can e-mail this information to Field Service engineer. Field Service can then do a preliminary evaluation of the problem before the Field Service engineer arrives at your site.
Troubleshooting

The following topics discuss possible TSQ Quantum XLS and TSQ Quantum GC system problems and solutions.

Communication Issues

Communication issues likely involve links between the data system and the mass spectrometer, gas chromatograph, or autosampler. This section does not address communication issues with other devices.

Communication issues can occur during the following:

- Data transfer between the mass spectrometer and the data system
- Mass spectrometer, gas chromatograph, and autosampler current status readbacks
- Instrument control, method downloading, and uploading
- Start, stop, pause, and initialize functions
- Error messages

How does the MS communication work?

The flow of digital information in the TSQ Quantum XLS and TSQ Quantum GC systems is bi-directional; the data system downloads analytical methods to the instrument and activates functions to start, stop, shut down, start up, and initialize. The TSQ Quantum XLS and TSQ Quantum GC systems report their readiness state, current tasks, various voltages, heated zones, and pressure readings. It also delivers a steady stream of mass spectral data during acquisition.

Why does the MS have communication issues?

Some communication issues are due to mechanical faults—for instance, a cable might be unplugged, or a device might be turned off. In other cases, the instrument method could be incorrect for TSQ Quantum XLS or TSQ Quantum GC system operations. Less common communication issues are due to defective electronic hardware components.

How do I detect communication issues?

You might detect communication issues from an error message delivered by the data system, or you might notice the failure of the data system to perform some expected task.

Issue: Data system is unable to initiate communication with the mass spectrometer.

Possible causes/solutions

- The software is not configured correctly. Select and configure the mass spectrometer from the Instrument Configuration window.
• The Ethernet cable is unplugged. Verify that the Ethernet cable is connected to the Ethernet port on the mass spectrometer. See Figure 12 on page 25.

• The Ethernet card in the PC is not configured or is faulty. Check the configuration or replace the Ethernet card if necessary.

• The mass spectrometer is in Service Mode. Return the electronics service switch to operating position.

• An incorrect Ethernet cable is used for the mass spectrometer. Use the supplied 10 Base-T Category 5 crossover cable (P/N 76396-0052, in TSQ Quantum XLS Accessory Kit).

Note You can extend the length of the Ethernet cable by plugging a standard Category 5 cable in series with the supplied crossover cable.

Possible cause/solution

Issue: Computer intermittently loses communication with the mass spectrometer.

• The Ethernet cable is loose or damaged. Inspect the cable and replace it if necessary.

Issue: Unable to download methods to the mass spectrometer.

• The software is not properly configured. Verify the correct settings in Instrument Configuration.

Issue: Acquisition does not begin as expected.

• The TSQ Quantum XLS or TSQ Quantum GC start mode is not properly configured. Verify that the instrument is configured properly. Refer to Xcalibur Help for more information.

• The TSQ Quantum XLS or TSQ Quantum GC Instrument Setup file has incorrect settings. Check the start time in the Instrument Setup file.

• The forepressure is too high due to solvent peak. Reduce injection volume or extend filament/multiplier delay time until after solvent peak.

• The remote start cable to the GC is disconnected. Connect the remote start cable.

• The GC did not start. Verify GC instrument method and configuration. Verify the connection between the autosampler and GC.

• The autosampler did not start. Verify autosampler instrument method and configuration. Verify that the sample is present.

• The heated zone stipend is not attained. See “Heated Zone Issues” on page 136.
Issue: Acquisition terminates unexpectedly.

Possible causes/solutions

- The end run time in the TSQ Quantum XLS or TSQ Quantum GC instrument method is incorrect. Check the instrument method for the GC and the MS.
- The data system is out of disk space. Check disk space; back up and remove files.

Issue: Unable to initialize the gas chromatograph.

Possible causes/solutions

- The GC is not turned on. Turn on the GC.
- The GC is not configured properly in Xcalibur. Check Instrument Configuration.
- The cable between COM1 and GC is disconnected. Verify connection.
- COM1 is not configured properly. Verify COM port configuration.

Issue: Unable to download methods to the gas chromatograph.

Possible causes/solutions

- There is a discrepancy between the instrument method and configuration. Verify consistency between method and instrument configuration.
- COM1 is not configured properly. Verify COM port configuration.

Issue: Unable to initialize the autosampler.

Possible causes/solutions

- The autosampler is not turned on. Turn on autosampler.
- The autosampler is not configured properly in Xcalibur. Check Instrument Configuration.
- The cable between the GC and autosampler is disconnected. Verify connection.
- The autosampler instrument configuration is not set to the correct port. Verify connection and configuration.

Issue: Unable to download methods to the autosampler.

Possible cause/solution

- There is a discrepancy between instrument method and configuration. Verify consistency between instrument method and instrument configuration.

Contamination Issues

Chemical noise is always present in any mass spectrometer. As a result, the high sensitivity of the mass spectrometer can cause new users to confuse background with a contamination problem. Additionally, the spectra shown in Xcalibur Tune and Real-Time Display are auto-normalized, which can make the background appear high-level.
Some chemical noise does occur, such as septum bleed after a series of injections, vial sample bleed (which occurs if more than one injection is made from a sample vial), and siloxane peaks that appear in the chromatogram at regular intervals from focusing at the head of the column or in the injector.

Other possible contamination sources include hydrocarbon contamination of the carrier gas, pump oil, or instrument cleaning solvents.

Always wear clean, lint- and powder-free gloves when handling ion source and mass analyzer components, and ensure that the carrier gas filter, carrier gas lines, and gas regulators are free of contamination and leaks.

Issue: Excessive chemical background due to a column bleed (m/z 429, 355, 281).

Possible causes/solutions

- The capillary column has not been properly conditioned. Condition the capillary column.
- The capillary column is damaged as a result of exposure to oxygen. Find the source of the oxygen in the carrier gas or air leak. Recondition or replace the capillary column.

Issue: Excessive injection port septum bleed (Typical m/z 207, 429, 355, 281).

Possible causes/solutions

- The septum is worn out or damaged. Replace the septum.
- Small pieces of septum are in the injection port liner. Replace the injection port liner; condition the capillary column.

Issue: Phthalate background (m/z 149, 167, 279).

Possible causes/solutions

- Phthalate contamination has occurred due to sample handling or solvent contamination.
- Packaging materials could be the source of phthalates.
- Isolate source of phthalates such as vial lids or plastic solvent containers and remedy.

Issue: Excessive hydrocarbon contamination (Typical ions are m/z 43, 57, 71, 85, 99).

Possible causes/solutions

- Carrier gas tubing is contaminated.
- Isolate source of hydrocarbon contamination and remedy.
- Replace carrier gas tubing.
- Change carrier gas filters.
Issue: Chemical background due to rhenium oxide (m/z 185/187, 201/203, 217/219, 233/235, 250/252).

Possible causes/solutions
- These series of rhenium oxide ions come from oxidation of the rhenium filament wire due to the introduction of air into the ion source while the filament is on.
- Check for air leaks and remedy. See “High Vacuum Issues” on page 138 for more information.

Issue: Spectra are observed due to the following solvents:

<table>
<thead>
<tr>
<th>Solvent Spectra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone (m/z 43, 58, 59)</td>
</tr>
<tr>
<td>Hexane (m/z 41, 43, 56, 57, 58, 85, 86)</td>
</tr>
<tr>
<td>Methanol (m/z 31)</td>
</tr>
<tr>
<td>Methylene chloride (m/z 84, 83)</td>
</tr>
<tr>
<td>Toluene (m/z 91, 92)</td>
</tr>
<tr>
<td>Trichloroethane (m/z 151, 153)</td>
</tr>
<tr>
<td>Xylene (m/z 105, 106)</td>
</tr>
</tbody>
</table>

Possible causes/solutions
- There is residual solvent from a cleaning procedure or laboratory background contamination. When you finish performing a cleaning procedure, allow cleaned components to dry thoroughly. Warm parts in the GC oven to drive off residual solvent.
- The observed compounds have been introduced through sample injection. The ultimate source is either a sample solvent or the autosampler rinsing solvent. Optimize GC method to separate solvent peak from the area of interest in the chromatogram.

Filament and Lens Control Issues

The lifetime of a filament depends on its exposure to oxygen and solvent vapors. The filament assembly protects the filament and increases its lifetime for many months.

Xcalibur diagnostics test the filament for continuity and current regulation. Testing the filament for continuity before each acquisition ensures that an open filament condition will stop an autosampler sequence and generate an error message.

Diagnostics test the lenses of the TSQ Quantum XLS and TSQ Quantum GC mass spectrometers. A flat line, which represents voltage readback versus the predicted voltage ramp, indicates a lens or other control fault. Contamination causes lens performance to deteriorate over time; the amount of time depends on what type of sample and ionization mode you use.

Be careful to handle the lenses with care, and do not use harsh cleaning techniques. Damaged lenses cause short circuits, which in turn can cause damage to the lens drivers.
Issue: Diagnostics indicate that the filament is open.

Possible cause/solution
- The filament is open. Vent the system and remove the filament. Normal resistance is 1.0 Ω. Replace if open.

Issue: Unstable emission current.

Possible cause/solution
- The filament is near the end of its life span. Replace the filament.

Issue: Short filament lifetime.

Possible causes/solutions
- There is an air leak contributing to short filament lifetime. Check for leaks; repair if any are found. See “High Vacuum Issues” on page 138 for more information.
- The filament is on during the solvent peak. Increase acquisition delay time until the solvent peak has passed.
- High emission current is being used. Use lower emission current to extend lifetime.

Issue: Diagnostics indicate a flat lens response.

Possible causes/solutions
- The power supply to the lens has a fault. Contact Thermo Fisher Scientific Technical Support.
- There is a fault with the lens drivers. Contact Thermo Fisher Scientific Technical Support.

Heated Zone Issues

The ion source and transfer line are heated zones. The ion source heater is controlled by the mass spectrometer and the transfer line heater is controlled by the Aux1 heated zone of the TRACE GC.

A heated zone problem is often the result of downloading an instrument method to the instrument that has a different setpoint than the current setting, causing a delay while the heated zone heats or cools.

Component failures are less common but can occur. These are usually related to open circuits in heater cartridges or faulty temperature sensors.

This manual does not discuss heated zones in the gas chromatograph.

Issue: Excessive chromatographic peak tailing.

Possible causes/solutions
- The ion source, transfer line, or both are not hot enough. Increase the transfer line temperature. It should be at least as hot as the highest GC oven temperature. Then, try increasing the ion source temperature.
• The sample analyte is adsorbing in the GC injector. Clean and deactivate the injection liner. You can also try liners made of different materials.

• The GC oven is not ramped to a high enough temperature. Extend upper oven temperature.

• The GC column must be replaced or does not have the appropriate stationary phase for your application. Change the GC column. See “Removing and Installing a GC Capillary Column” on page 122.

• The GC column does not extend far enough past the end of the transfer line tip. If the end of the column is inside the tip, an excessive amount of GC effluent will contact the inside wall of the tip. Follow the procedure described in “Installing a GC Capillary Column” on page 124.

Issue: Source heater will not heat.

Possible causes/solutions

• No contact between the ion source temperature sensor and the heater block. For accurate temperature readings of the heater block, fully screw the threaded standoff into the ion source to ensure contact between the temperature sensor and the heater block. See “Reassembling the L1, L2, L3 Lens Assembly” on page 93.

• One or more heater cartridges on the EI/CI Source PCB is defective. Replace the EI/CI Source PCB. See “Disassembling and Reassembling the TSQ Quantum XLS Ion Source Completely” on page 107 (TSQ Quantum XLS), or “Disassembling and Reassembling the TSQ Quantum GC Ion Source Completely” on page 110 (TSQ Quantum GC).

• The ion source temperature sensor (RTD) is defective. Replace the EI/CI Source PCB. See “Disassembling and Reassembling the TSQ Quantum XLS Ion Source Completely” on page 107 (TSQ Quantum XLS), or “Disassembling and Reassembling the TSQ Quantum GC Ion Source Completely” on page 110 (TSQ Quantum GC).

Issue: Source heater overheats.

Possible cause/solution

• The ion source temperature sensor (RTD) is defective. Replace the EI/CI Source PCB if necessary. See “Disassembling and Reassembling the TSQ Quantum XLS Ion Source Completely” on page 107 (TSQ Quantum XLS), or “Disassembling and Reassembling the TSQ Quantum GC Ion Source Completely” on page 110 (TSQ Quantum GC).

Issue: Transfer line will not heat.

Possible causes/solutions

• Aux1 zone of the GC is not configured for MS Transfer Line. Configure Aux1 zone of the GC and set transfer line temperature in the GC Method Editor.

• Transfer line heater elements are defective. Replace the transfer line.

• The transfer line temperature sensor (RTD) is defective. Replace the transfer line.
Issue: Transfer line overheats.

Possible cause/solution
- The transfer line temperature sensor is defective. Replace the transfer line.

High Vacuum Issues

High vacuum problems can manifest themselves in two ways:

- An intermittent vacuum condition (the vacuum pressure in the vacuum manifold fluctuates intermittently) can cause chromatographic signals to drop out, or, if the pressures exceed the maximum allowed pressures set in Xcalibur (See Table 3 on page 57), then the TSQ Quantum XLS or TSQ Quantum GC turns off.
- If the vacuum is consistent enough that it does not exceed the maximum allowed pressure and avoids the Xcalibur automatic shutdown, non-reproducible false chromatographic peaks can be generated in the chromatogram.

Typical forepressure readbacks are 30 to 40 mTorr (in EI mode), and typical manifold pressure (ion gauge readback) is 2×10^{-5} Torr with argon collision gas on, and 2×10^{-6} Torr with Ar collision gas off.

The most reliable way to find vacuum leaks is to spray a gas around the vacuum manifold and look for the characteristics ions in full-scan EI mode. Argon produces $m/z\ 40$. Alternatively, you can use compressed electronic dusting spray containing an HFC. For example, Falcon® Dust-Off® and MicroCare® Micro-Blast™ contain tetrafluoroethane, which produces ions at $m/z\ 69$ and 83.

Issue: Forepump will not turn on.

Possible causes/solutions
- The forepump is off. Check the forepump switch.
- The vacuum service switch is in the Off position. Place the vacuum service switch in the operating position.
- The forepump power cable from the TSQ Quantum XLS or TSQ Quantum GC is not connected. Connect the power cable.
- The forepump is faulty. Replace the forepump.

Issue: Forepump powers on, but will not pump down.

Possible causes/solutions
- The oil level in the forepump is insufficient. Check oil level; add oil if necessary.
- The foreline is leaking. Check the clamps and connectors. Replace the foreline hose if a hole is found.
- The vacuum manifold cover is leaking.
- The forepump is faulty. Replace the forepump.
Issue: Turbo pump shuts off during operation.

Possible cause/solution

- The foreline pressure is too high. Check for leaks in the foreline.

Issue: Unexpected full ventilation occurs.

Possible causes/solutions

- A gross leak is present. Check for leaks.
- The system was vented through the inlet valve. Close and plug the inlet valve.
- The GC column broke at the transfer line. Replace the GC column. See “Removing and Installing a GC Capillary Column” on page 122.
- The foreline was cut. Replace the foreline hose.

Issue: Vacuum is faulty.

Possible Solutions

- A gross leak is present. Check for leaks.
- The pressure in the analyzer region of the vacuum manifold, as measured by the ion gauge, must be below the pressures listed in Table 3 on page 57.

Linearity Issues

Linearity issues occur when a plot of intensity versus concentration of a known compound is not linear. Poor instrument operating conditions can cause linearity problems. Additionally, certain compounds do not give a desired linear response due to chromatographic activity.

A well-maintained instrument provides good linear response over a wide range of concentrations for most compounds. Like any instrument, however, the TSQ Quantum XLS and TSQ Quantum GC has a saturation point.

Perform routine injector and column maintenance to minimize linearity problems. Usually, a hardware fault that affects linearity shows different issues than those that might be attributed to linearity.

Issue: Calibration plots not sufficiently linear.

Possible causes/solutions

- High-end standards are too concentrated for the MS. Use the split injection technique to decrease the amount of sample or lower emission current to reduce MS sensitivity.
- The ion volume and lenses are dirty. Clean ion volume and lenses as described in “Cleaning Ion Source Components” on page 85.
- The electron multiplier setting is incorrect. Run Auto Tune - Calibration as described in “Tuning and Calibrating” on page 63.
- The injection port liner or capillary column is dirty. Change the injection port liner and trim the capillary column.
• The capillary column stationary phase is too thin for high concentration samples. Use a higher capacity capillary column with a thicker stationary phase, or use a split injection technique.

• The capillary column is bad. Replace the capillary column. See “Removing and Installing a GC Capillary Column” on page 122.

Power Supply Issues

Xcalibur diagnostics detect most power supply issues. Power supply problems often involve a blown fuse, faulty electronic components, or something as simple as a disconnected cable. Fuses should be replaced by a Thermo Fisher Scientific Field Service Engineer.

Issue: TSQ Quantum XLS will not power on.

Possible causes/solutions

• The power cord is disconnected. Verify that the power cord is plugged in.

• Voltage is not coming from the electrical outlet. Verify that the electrical outlet is operational.

• The Power Module is faulty. Contact Thermo Fisher Scientific Technical Support.

Issue: The TSQ Quantum XLS powers on, but trips the circuit breaker.

Possible causes/solutions

• The Power Module is faulty. Contact Thermo Fisher Scientific Technical Support.

• The forepump causes the circuit breaker to trip. Check forepump; replace it if necessary.

Sensitivity Issues

If you observe a drop in instrument sensitivity, you should determine if the sensitivity drop was sudden or if it occurred gradually. A sudden loss of sensitivity can be the result of sudden component failure or an unnoticed change in the analytical method. Simple errors such as a plugged autosampler syringe or too low sample level in the sample vial can give the appearance of instrument failure.

Gradual drops in sensitivity are usually the result of ion volume or lens contamination, and are easily remedied by cleaning the ion volume or lenses.

The electron multiplier influences sensitivity and has a limited lifetime. Eventually the electron multiplier must be replaced.

Improper GC maintenance is another cause of diminished sensitivity. It is important to establish a routine maintenance program for the GC. See the TRACE GC Maintenance Manual for more information on establishing a maintenance program.
Issue: The chromatogram has a low total ion current signal.

Possible causes/solutions

- The GC temperature ramp does not continue to a high enough temperature to elute high boiling point compounds. Multiple injections cause these compounds to accumulate in a column, reducing sensitivity. Extend upper temperature or the time at upper temperature in the GC oven ramp.

- The instrument is out of tune, or the tune file is incorrect. Select correct tune file for the method or run automatic tune as described in “Tuning and Calibrating” on page 63.

- The ion volume is contaminated. Clean the ion volume.

- The ion volume is incorrectly positioned. Position the ion volume properly.

- The magnets above and below the ion source are installed incorrectly. Position both magnets so the south pole is on top. Electrons will not focus into the ion volume if one magnet is upside down.

- Dust has collected in the electron multiplier or on the conversion dynode. Contact Thermo Fisher Scientific Technical Support.

- The emission current is set too low. Check the setting listed for the emission current. Choose Tune > Manual and select the Controls tab.

- The ground connection between the electrometer PCB and anode feedthrough is faulty. Contact Thermo Fisher Scientific Technical Support.

- There is a problem with the filament or lens control. See “Filament and Lens Control Issues” on page 135 for more information.

- The EI/CI Source PCB is faulty, allowing emission current to leak to ground. Contact Thermo Fisher Scientific Technical Support.

- Reagent gas is leaking into the analyzer, suppressing EI signal. Check for presence of CI reagent ions in spectrum. Replace CI Gas Flow Module if necessary.

Issue: Poor compound sensitivity.

Possible causes/solutions

- The syringe, injection port liner, and column depth in injector are incorrectly matched. See TRACE GC Ultra Operators Manual for the correct combination.

- Sample delivery is insufficient due to a plugged syringe needle. Clean or replace the syringe.

- The injection port liner is contaminated. Clean or replace the injection port liner.

- Graphite or septa particles contaminate the injection port. Clean the injection port.

- The injector or septum is leaking. Replace septum and perform leak check on the GC.

- The capillary column is at the end of its life span. Replace the capillary column.
Diagnostics and Troubleshooting

Troubleshooting

Issue: Sensitivity is unstable or shows decrease with repeated injections.

Possible causes/solutions

- The GC temperature ramp does not continue to a high enough temperature to elute high boiling point compounds. Multiple injections cause these compounds to accumulate in a column, reducing sensitivity. Extend the upper temperature or the time at upper temperature in the GC oven ramp.

- The ion volume or lenses are contaminated. Clean the ion volume and lenses as described in “Cleaning Ion Source Components” on page 85.

- The ion source temperature is too low and causes the ion source to contaminate too quickly. Clean ion volume and lenses as described in “Cleaning Ion Source Components” on page 85 and then raise ion source temperature.

- There is a problem with the filament emission current control. See “Filament and Lens Control Issues” on page 135 for more information.

- The electron multiplier is faulty. Contact Thermo Fisher Scientific Technical Support.

- The injection port liner or capillary column is contaminated. Replace the injection port liner and trim the capillary column.

Issue: Poor sensitivity in CI mode.

Possible causes/solutions

- An EI ion volume is installed. Install a CI ion volume as described in “Changing Ionization Modes” on page 73.

- The small hole in the CI ion volume is plugged. Use a dental pick or old syringe needle to clear it.

- The filament is not aligned. Remove the ion volume and check if the ion burn is centered around the small electron entrance hole. Be sure the filament is properly inserted into the connector. Carefully bend the filament wire to better align it with the ion volume.

- The ion volume is not inserted properly. While running the instrument, you can push on the ion volume with the I/R tool. Be sure to monitor the pressure to ensure that you get a good seal around the I/R tool. Otherwise, you may damage the filament. An increase in signal calibration gas as you push on the ion volume usually indicates that the filament is not aligned properly.

Stability Issues

Stability helps provide consistent instrument precision and the reproducibility of accurate results. Good operating conditions for the mass spectrometer, gas chromatograph, and autosampler contribute to instrument stability.
Sample preparation, spiking errors, sample injection errors, and lack of routine maintenance on the instruments can cause false stability issues.

When hardware faults affect instrument stability, investigate simple solutions first, such as cleaning the ion volume and lenses, or checking for air leaks. Usually, a hardware fault that affects stability shows different issues than those which might be attributed to stability.

Issue: The signal response is unstable or drops out unexpectedly.

Possible causes/solutions
- There is a problem with the filament or lens control. See “Filament and Lens Control Issues” on page 135 for more information.
- There is an air leak. Check for leaks. See “High Vacuum Issues” on page 138 for more information.
- There is a high vacuum problem. See “High Vacuum Issues” on page 138 for more information.
- There is a contamination problem. See “Contamination Issues” on page 133 for more information.
- Dust has collected in the electron multiplier or on the conversion dynode. Contact Thermo Fisher Scientific Technical Support.

Tuning Issues

You can suspect a tuning problem when Xcalibur Auto Tune - Calibration fails. Auto Tune - Calibration performs several functions, and issues or error messages indicate different problems. Diagnostics can usually uncover a tuning problem.

Issue: “Cannot find Calibration Gas” error message received.

Possible causes/solutions
- There is a mechanical problem with the ion source or lenses. Verify that an EI ion volume is installed. Verify correct orientation and cleanliness of ion volume. Verify cleanliness and correct operation of lenses.
- Tune file settings are out of usable range. Restore default tune settings and calibration settings. Run Auto Tune - Calibration. See “Tuning and Calibrating” on page 63.
- The calibration gas vial is empty. Add 100 μL (max) of calibration compound to calibration gas vial. See “Adding Calibration Compound” on page 117.

Issue: The electron multiplier gain calibration fails.

Possible causes/solutions
- The electron multiplier has not been given sufficient time to outgas since venting. Allow more time to pump out.
- The GC column flow is too high. Lower it to 1 mL/min.
7 Diagnostics and Troubleshooting

Troubleshooting

• The multiplier is near the end of its lifetime. Multipliers typically last about 2 to 3 years before they are too noisy for the gain to be set accurately. Contact Thermo Fisher Scientific Technical Support.

• The multiplier power supply is faulty. Contact Thermo Fisher Scientific Technical Support.

• The filament is the source of too much background noise. See “Filament and Lens Control Issues” on page 135 for more information.

• Chemical background in the manifold is elevated. Remedy leaks or sources of water contamination in carrier gas. See “High Vacuum Issues” on page 138 for more information.

• The difference between the electron energy and the setpoint is greater than 5 V. Contact Thermo Fisher Scientific Technical Support for assistance.

Issue: Poor high mass response.

Possible causes/solutions

• Poor high m/z ion intensity because the ion source temperature is too high. Reduce the ion source temperature to reduce the amount of thermal decomposition and fragmentation of your analyte.

• Poor high m/z ion intensity because of bad ion source lens settings. Run Auto Tune - Calibration. See “Tuning and Calibrating” on page 63.

• Helium pressure in the ion source is too high or low. Set flow to 1.0 mL per minute for most applications.

• There is a vacuum leak. Find and repair any leaks. Be sure to check the transfer line fitting in the GC oven. See “High Vacuum Issues” on page 138 for more information.

• An excess amount of low m/z ions, such as hydrocarbons or column bleed. Remedy the source of these low m/z ions.

• The ion volume or lenses are contaminated. Clean the ion volume or lenses. See “Cleaning Ion Source Components” on page 85.

• m/z 131 is not base peak because the multiplier gain is too low. The multiplier gain calibration may set the multiplier voltage too low for a noisy multiplier. Electron multipliers older than 2 to 3 years are often noisy. Contact Thermo Fisher Scientific Technical Support.

• There is poor high m/z intensity and poor resolution of low m/z ions because the conversion dynode is faulty. Contact Thermo Fisher Scientific Technical Support.

• The injection rf is not calibrated. Run Auto Tune - Calibration as described in “Tuning and Calibrating” on page 63.

• There is a problem with the filament or lens control. See “Filament and Lens Control Issues” on page 135 for more information.
• Reagent gas is leaking into the analyzer, suppressing EI signal. Check for the presence of CI Reagent ions in spectrum. Replace the CI Reagent Gas Flow Module if necessary.

Issue: Weak signal.
Possible causes/solutions

- The ion volume or ion source lenses are dirty. Clean the contaminated components as described in “Cleaning Ion Source Components” on page 85.

- The multiplier is set too low. Run multiplier gain calibration in Auto Tune - Calibration as described in “Tuning and Calibrating” on page 63. An electron multiplier older than 2–3 years may be too noisy for the multiplier gain calibration to accurately set the voltage. The electron multiplier might need to be replaced. Contact Thermo Fisher Scientific Technical Support.

- The wrong type of ion volume is installed. EI and CI require different ion volumes. They may not be used interchangeably. Change the ion volume as described in “Changing Ionization Modes” on page 73.

- The ion volume is absent or incorrectly positioned. Verify that the ion volume is positioned correctly.

- There is a filament or lens control problem. See “Filament and Lens Control Issues” on page 135 for more information.

- The electron multiplier is faulty. Contact Thermo Fisher Scientific Technical Support.

Replacing a Fuse

CAUTION Fuses protect the various circuits by opening the circuits whenever overcurrent occurs. On the TSQ Quantum XLS and TSQ Quantum GC mass spectrometers, a failed fuse indicates a failed board or electronic module that must be replaced by a Thermo Fisher Scientific Field Service Engineer.

Replacing PCBs and Power Supplies

CAUTION The TSQ Quantum XLS and TSQ Quantum GC mass spectrometer electronic assemblies are close-packed to minimize the size of the system. Due to the complexity of removing and reinstalling the mass spectrometer electronic assemblies, only a Thermo Fisher Scientific Field Service Engineer can replace electronic assemblies.
Diagnostics and Troubleshooting
Replacing PCBs and Power Supplies
Using the Direct Sample Probe

With the direct sample probes (direct insertion probe and direct exposure probe) you can introduce compounds directly into the ion source without GC column separation. This chapter covers, step-by-step, a direct insertion probe (DIP) experiment using perfluorotetracosane \(\text{(CF}_3\text{CF}_2\text{)}_{22}\text{CF}_3 \), molecular weight 1238.18, melting point 190 °C). You can perform a similar experiment using your compound.

Creating an Instrument Method

An instrument method contains the settings that the TSQ Quantum XLS or TSQ Quantum GC mass spectrometer uses during an experiment. Use the Instrument Setup view to create the instrument method.

To create an instrument method

1. On the Xcalibur Home Page, click the Instrument Setup icon to open the Instrument Setup view.
2. Click the TSQ icon in the viewbar.
3. Choose TSQ > Regular Method to open the regular method Scan Editor page.
4. On the Scan Editor page, create a one segment, one scan event instrument method. In this example, the segment is 8 minutes long (see Figure 65).
5. Specify the mass spectrometer settings, for this example, full-scan scan type, Q1MS scan mode, and positive polarity.

Figure 65. Scan Editor page of Instrument Setup

6. Click the EI/CI tab to display the EI/CI page (see Figure 66).
7. Enter or select the following settings:
 - Number of States: 1
 - State at Start of Run: On
 - Calibration Gas Setting: Off
 - Use DIP/DEP Probe: [check box selected]

 This example is an EI experiment with a 200 μA emission current.

8. Save the instrument method.
 a. Choose File > Save As to open the Save As dialog box.
Creating a Sequence

A sequence contains sample information—one sample per row. In this example the sequence has one sample.

Note If the sequence has more than one sample, Xcalibur prompts you to reload the probe after each sample.

To create a sequence

1. On the Xcalibur Home Page, click the **Sequence Setup** icon to open the Sequence Setup view (see Figure 67).

2. Enter the name and path of the instrument method. In this example, it is C:\Xcalibur\methods\DIP test.

3. Enter a file name and path for the raw file that contains the acquired data. In this example, it is C:\Xcalibur\Data\data01.

Figure 67. Sequence Setup view, showing one sample in the sequence
Preparing the Probe and Inlet Valve

To prepare the probe and inlet valve

1. Connect the direct sample probe controller to the mass spectrometer by contact closure with the probe start cable (P/N 70111-63627, in TSQ Quantum XLS or TSQ Quantum GC Accessory Kit).

2. Create a probe method on the controller. Refer to the probe manual. This example uses the following DIP settings:
 - Initial temperature: 50 °C
 - Initial time: 5 s
 - Ramp rate: 100 °C/min
 - Final temperature: 200 °C
 - Ramp hold time: 200 s

3. Load sample on the probe.

4. Install the guide bar.
 a. With the guide ball track facing left, insert the guide bar into the entry housing. See Figure 16 on page 29.
 b. Push the guide bar in as far as it goes. Rotate it 90° clockwise to lock the guide bar in the entry housing.

5. Prepare the inlet valve.
 a. Make sure the inlet valve is closed with the inlet valve lever down, as shown in Figure 16 on page 29.
 b. Loosen the inlet valve knob counter-clockwise, and remove the inlet valve plug.

Preparing the Mass Spectrometer

To prepare the TSQ Quantum XLS for the experiment

1. Choose Start > All Programs > Thermo Instruments > TSQ > TSQ Tune to open the EZ Tune window if it is not already open.

 IMPORTANT The TSQ EZ Tune window must be open for the mass spectrometer to initiate the probe insertion sequence.

2. Ensure that the TSQ Quantum XLS or TSQ Quantum GC mass spectrometer is the only instrument in use and that there are no start instruments.
a. On the Xcalibur Home Page, click the **Sequence Setup** icon to open Sequence Setup, if it is not already open.

b. In Sequence Setup, choose **Actions > Run Sequence**. The Run Sequence dialog box opens (see **Figure 68**).

Figure 68. Run Sequence dialog box, showing instruments in use

c. Click **Change Instruments** to open the Change Instruments In Use dialog box.
d. Click any Yes in the In Use column to clear all instruments other than the TSQ Quantum.

e. Ensure that the TSQ Quantum has a Yes in the In Use column. Click the area if necessary.

f. Click any Yes in the Start Instrument column to clear all start instruments.

g. Click OK to save your settings and close the Change Instruments In Use dialog box.

Running the Sequence

You acquire data by running the sequence. Xcalibur saves the acquired data in a raw file.

Note You must have the TSQ EZ Tune or QuickQuan application running so that Xcalibur can display instrument methods.

To run the sequence

1. In the Run Sequence dialog box (see Figure 68 on page 152), click OK to start the acquisition. Xcalibur displays the Insert Probe message.
2. Inset the probe into the inlet valve.
 a. Insert the guide ball on the DIP probe into the guide ball hole on the guide bar.
 b. Slide the probe forward into the inlet valve until the guide ball is at the guide bar’s first stop. See Figure 71.
 c. Tighten the inlet valve knob clockwise to ensure a leak-tight seal.

3. Click **OK**. The forepump evacuates the inlet valve.

4. When the Safe to Open Valve message appears, click **OK**.
5. Pull the inlet valve lever up to open the inlet valve.

6. Slide the probe into the vacuum manifold until the tip of the probe is fully inserted into the ion volume holder. See Figure 73.

Figure 73. Probe inserted into the inlet valve

7. When you receive the Acquisition Ready message, click OK. The TSQ Quantum XLS is now waiting for contact closure.
8. In Sequence Setup, choose View > **Real Time Plot View** to display the mass spectrum and chromatogram.

9. Start the probe method from the probe controller to initiate data acquisition. See Figure 75 and Figure 76.

Figure 74. Acquisition Ready message

Figure 75. Perfluorotetracosane mass spectrum at 0.56 minute retention time
Examining the Raw Data in Qual Browser

You can use Qual Browser to display the mass spectrum at various times in the chromatogram.

- **To examine the raw data**
 1. On the Xcalibur Home Page, click the **Qual Browser** icon to open the Qual Browser window.
 2. Click on the chromatogram to display the mass spectrum at that retention time. See Figure 77.
Removing the Probe

- **To remove the probe**

 1. Withdraw the probe until the guide ball on the probe reaches the first stop on the guide bar (Figure 71).
 2. Close the inlet valve by pushing the lever down.

 CAUTION Close the inlet valve first. Otherwise, the system vents to the atmosphere. Do not withdraw the probe beyond the point where the guide ball reaches the first stop in the guide bar.

 3. Loosen the inlet valve knob by turning it counter-clockwise.
 4. Continue withdrawing the probe completely from the inlet valve by sliding it through the guide ball track in the guide bar.
5. Store the probe in its case.

6. Remove the guide bar by rotating it 90° counter-clockwise and sliding it out of the entry housing.

7. Replace the inlet valve plug and tighten the inlet valve knob clockwise to form a seal. The inlet valve plug prevents air from entering the vacuum manifold in case the inlet valve is accidentally opened. You can also remove the inlet valve lever by pulling it free.
Replaceable Parts and Consumables

This chapter contains TSQ Quantum XLS and TSQ Quantum GC part numbers for replaceable parts and consumables. To ensure proper results in servicing the TSQ Quantum XLS or TSQ Quantum GC mass spectrometer, order only the parts listed or their equivalent. Contact Thermo Fisher Scientific San Jose and have your TSQ Quantum XLS or TSQ Quantum GC serial number ready.

These kits with replaceable parts and consumables are available for the TSQ Quantum XLS and TSQ Quantum GC:

Contents
- Accessory Kit
- Chemicals Kit

Accessory Kit

<table>
<thead>
<tr>
<th>Description</th>
<th>Function</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitting, ferrule, SWG, 1/8 in., brass, set</td>
<td></td>
<td>00101-08-00009</td>
</tr>
<tr>
<td>Fitting, connection, 1/4 to 1/8 in.</td>
<td></td>
<td>00101-01709</td>
</tr>
<tr>
<td>Fitting, connection, 1/4 to 1/8 in.</td>
<td></td>
<td>00101-01712</td>
</tr>
<tr>
<td>Fitting, ferrule, SWG, front, 3/8 in., brass</td>
<td></td>
<td>00101-11500</td>
</tr>
<tr>
<td>Ferrule, 0.4mm ID × 1/16</td>
<td></td>
<td>00101-18100</td>
</tr>
<tr>
<td>Restek® capillary-grade hydrocarbon trap</td>
<td>For removing hydrocarbons from the GC carrier gas</td>
<td>00106-99-00001</td>
</tr>
<tr>
<td>Restek high-capacity oxygen trap</td>
<td>For removing oxygen from the GC carrier gas</td>
<td>00106-99-00002</td>
</tr>
<tr>
<td>Cotton swabs</td>
<td>For applying cleaning paste to stainless steel parts</td>
<td>00301-01-00015</td>
</tr>
<tr>
<td>Tubing, 1/8 in., copper, pre-cleaned</td>
<td>Gas lines</td>
<td>00301-22701</td>
</tr>
<tr>
<td>Ball valve seal kit (replacement)</td>
<td>For replacing the ball valve seal in the inlet valve</td>
<td>119265-00003</td>
</tr>
</tbody>
</table>
9 Replaceable Parts and Consumables

Chemicals Kit

Table 7. Accessory Kit (P/N 70111-62077) (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Description</th>
<th>Function</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lens alignment tool</td>
<td>For aligning ion source lenses 1, 2, and 3</td>
<td>120271-0001</td>
</tr>
<tr>
<td>Filament assembly</td>
<td>For replacing a failed filament in the ion source</td>
<td>120320-0030</td>
</tr>
<tr>
<td>Nitrile gloves medium</td>
<td>For handling clean parts that are under vacuum</td>
<td>23827-0008</td>
</tr>
<tr>
<td>Nitrile gloves large</td>
<td>For handling clean parts that are under vacuum</td>
<td>23827-0009</td>
</tr>
<tr>
<td>Syringe, 10 uL, 80mm</td>
<td>For adding calibration compound</td>
<td>36502019</td>
</tr>
<tr>
<td>Tee union, 1/8 in.</td>
<td></td>
<td>00101-01-00012</td>
</tr>
<tr>
<td>Cable, start, probe</td>
<td>Contact closure cable between the direct sample probe and the mass spectrometer</td>
<td>70111-63627</td>
</tr>
<tr>
<td>Cable, start, GC</td>
<td>Contact closure cable between the GC and the mass spectrometer</td>
<td>70111-63626</td>
</tr>
<tr>
<td>Forceps, 10 in., stainless steel</td>
<td>For handling ion volumes and clean components</td>
<td>76360-0400</td>
</tr>
<tr>
<td>Cable, 10 base-T, crossover, 15-ft, shielded</td>
<td></td>
<td>76396-0052</td>
</tr>
</tbody>
</table>

Table 8. Chemicals Kit (P/N 70111-62078)

<table>
<thead>
<tr>
<th>Description</th>
<th>Function</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorotributylamine (FC-43)</td>
<td>Tuning and calibration compound</td>
<td>50010-02500</td>
</tr>
<tr>
<td>Aluminum Oxide</td>
<td>Cleaning stainless steel parts</td>
<td>32000-60340</td>
</tr>
<tr>
<td>Benzohexane</td>
<td>Performance testing</td>
<td>120150-TEST</td>
</tr>
<tr>
<td>Octafluoronaphthalene</td>
<td>Performance testing</td>
<td>120150-TEST</td>
</tr>
</tbody>
</table>
Index

Symbols
133

A
Accessory Kit 161
aluminum oxide 162
analyzer assembly, lenses, voltages applied to 39
analyzer chamber, location (figure) 43
Analyzer Control PCB, discussion 47
analyzer region, vacuum manifold, description 42
analyzer region, vacuum manifold, location 42
and 41
anode, electron multiplier, description 39
Auto Tune - Calibration 66
automatically 66
autosampler
configuration 18
photo 2
power outlet 24
startup 55, 58
TriPlus 18
troubleshooting communication problems 133
AutoSIM scan type 14

B
ball valve
extraction tool (figure) 121
extraction tool, using 121
seal, replacing 121
ball valve seal kit 161
benzohexane 162

C
cables 162
calibrating
and H-SRM (note) 63
discussed 63
frequency (note) 63
running 66
tune and calibration report 69
calibration compound
adding 117
flow control, description 46
mass spectrum, displaying 64
observed peaks 64
on, off 64
spectrum, positive EI mode 66
calibration compound vial
location (figure) 118
removing and reinstalling 118
calibration gas valve, description 46
capillary column
conditioning 125
installing 124
removing 122
removing ion source (Caution) 89, 96
cathode, electron multiplier, description 39
Cautions
emergency shutdown 23, 51
forepump and line power 44
I/R tool removal, withdrawing 79
Ion Source PCB removal 109, 111
removing ion source and capillary column 89, 96
replacing fuses 145
replacing PCBs and power supplies 145
centroid scan, defined 15
chemical ionization (CI)
discussed 4
gas valve, description 46
methane 4
removing ion volume 73
Chemicals Kit 162
circuit breaker 23–24
cleaning
aluminum parts 115
ceramic parts 115
frequency 83
ion volumes 88
lenses L1, L2, L3, L4 88, 95
list (table) 83
stainless steel parts 113
collision cell
 figure 34
 location (figure) 43
collision energy (Q2 offset voltage) 38
collision gas
 description 36
collision gas valve, description 45
collision-induced dissociation
 discussion 36
column bleed contamination 133
Communication LED
 description 22
 figure 22
 mass spectrometer reset 59
 mass spectrometer startup 57
compliance
 regulatory iii
 WEEE vii
computer, features 48
consumables 161
contamination
 column bleed 133
 septum bleed 133
 solvent ions 135
 troubleshooting 133
Convectron gauge, description 45
conversion dynode
 description 39
 figure 40

D
data dependent scan mode, discussed 11
data system
 description 48
 GC interface 48
 instrument interface 48
 LAN interface 49
 personal computer 48
 primary Ethernet adapter 48
 shutdown 55
data types, discussed 14
diagnostic 39
diagnostic system 129
 running 129
DIP, example procedure
 1 creating an instrument method 147
 2 creating a sequence 150
 3 preparing the probe and inlet valve 151
 4 preparing the mass spectrometer 151
 5 running the sequence 153
 6 examining the data 157
perfluorotetracosane 147
direct insertion probe (DIP)
 perfluorotetracosane example procedure 147
direct sample probe
 and inlet valve 151
direct exposure probe (DEP) 20
direct insertion probe (DIP) 20
 inserting into inlet valve (figure) 154
mass spectrometer, preparing 151
 photo 20
 using 147
dynode 39

E
electron ionization (EI)
 discussed 4
 removing ion volume 73
electron multiplier
 anode, description 39
 description 39
 figure 40
electronic assemblies
 description 46
 ion detection system 47
 Power Entry Module, description 46
 RF voltage generation, description 47
electronics service switch
 description 24
 location (figure) 24–25
 mass spectrometer components On/Off status 60
embedded computer
 description 46
 resetting 58
emergency shutdown
 Caution 23
 front panel system power off button 23
 procedure 51
 system power off button 51
Ethernet 48
 Ethernet Link OK LED 25

F
FC-43
 adding 117
mass spectrum, displaying 64
 observed peaks 64
 on, off 64
 part number 162
 spectrum, positive EI mode 66
Index:

ferules 161
filament
description 28
location (figure) 26–27, 104, 106
on, off 64
part number 102, 105
problems, troubleshooting 135
replaceable parts 162
replacing 102, 105
filters 46
fittings 161
forepump
description 44
maintainence 116
power cord (Caution) 44
forpump
power outlet (figure) 25
front panel LEDs
Communication 22
description 22
figure 22
Power 22
Scan 23
System 23
Vacuum 22
front panel system power off button
figure 23
full scan type 12
functional description
autosampler 18
data system 48
direct sample probes 20
gas chromatograph (GC) 19
inlet valve 29
ion optics 30
mass analyzer 32
mass spectrometer 21
Q0 quadrupole 30
transfer line 20
TSQ Quantum GC 17
fuses, mass spectrometer, replacing 145
G
gas chromatograph (GC)
capillary column, installing 124
capillary column, removing 122
column installation 124
communication with data system 48
configuring 19
functional description 19
leak check 125
photo 2
power outlet 24
startup 55–56
troubleshooting communication problems 133
guide bar
figure 29, 74
installing 73
H
hydrocarbon trap 161
I
inlet gasses hardware
calibration compound 46
CI gas valve 46
collision gas valve 45
description 41
functional block diagram 41
inlet valve
and direct sample probe 151
Caution 79
components (figure) 75
description 29
figure 29
guide bar 29
Insert Probe message 75
insertion/removal (I/R) tool, inserting 76
ion volumes, installing 80
lever, removing 82
plug orientation 82
procedure 74
Safe to Insert Probe message 77
Insert Probe message (figure) 75
insertion/removal (I/R) tool
figure 29, 74
inserting 76
ion volumes, removing and installing 79
lock position 78
unlock position 74
withdrawal (Caution) 79
Instrument Configuration window, opening 18–19
instrument method, creating 147
intelligent selected reaction monitoring (iSRM) 13
ion detection system
conversion dynode 39
description 39
electron multiplier 39
electron multiplier gain 40
electronic assemblies 47
ion gauge
description 45
location (figure) 43
Index:

ion optics
description 30
ion polarity modes, discussed 5
ion source
cleaning 102, 105
cleaning components 85
cross sectional view (figure) 31
description 25
dissassembling completely 107, 110
electrical connections 89, 96
exploded view (figure) 86–87
figure 26–27
filament, replacing 102, 105
filament, replacing 102, 105
ion source lenses, reinstalling 94, 101
Ion Source PCB, location (figure) 108, 111
lens assembly, disassembling 92, 98
lens assembly, removing 91, 98
lenses, cleaning 88, 95
lenses, reassembling 93, 101
less assembly, exploded view 93, 100
location (figure) 89, 96
reinstalling 94, 102
removing 89, 96
ion source block
location (figure) 26–27
ion source chamber
location (figure) 43
Ion Source PCB
location (figure) 26–27, 89, 96, 107, 110
reinstalling 109, 112
removal 109, 111
removal (Caution) 109, 111
ion transmission device
defined 6
rod assembly 6
ion volumes
attaching and removing from I/R tool 79
cleaning 88
figure 28
installing 80
location (figure) 81
removing 73
ionization modes
changing 73
chemical ionization (CI) 3
discussed 3
electron ionization (EI) 3
iSRM scan type 13

leak check, GC 125

LEDS
Communication LED 22
Communication LED, mass spectrometer reset 59
Communication LED, mass spectrometer startup 57
Ethernet Link OK 24–25
Forepump On 24
Power LED 22
Power LED, mass spectrometer reset 59
Power LED, mass spectrometer startup 57
Pump On, location (figure) 25
Scan LED 23
System LED 23
System LED, mass spectrometer reset 59
System LED, mass spectrometer startup 57
Vacuum LED 22
Vent Valve Closed 24
Vent Valve Closed (figure) 25

lens alignment tool 161
lens L1, L2, L3, and L4
location (figure) 26–27
lenses
analyzer assembly, voltages applied to 39
ion source lenses exploded view 93, 100
ion source lenses, reassembling 93, 101
ion source lenses, reinstalling 94, 101
L1, L2, L3 exploded view 93, 100
L1, L2, L3, L4 figure (TSQ Quantum XLS) 26
L1, L2, L3, L4 location (figure) 27
L1, L2, L3, L4, cleaning 88, 95
L21, L22, L23, figure 34
L31, L32, L33, figure 34
linearity problems, troubleshooting 139

M
main power circuit breaker
description 23–24
location (figure) 24
Maintaining 116
maintenance
ball valve seal, replacing 120
forepump 116
frequency 83
GC column installation 124
ion source filament, replacing 105
ion source lenses, cleaning 88
ion volumes, cleaning 88
procedures (table) 83
mass analysis
collision-induced dissociation 36
discussion 34
mass analyzer
defined 6
description 32
quadrupole rod assembly, functional description 33
mass anaysis
RF and dc fields (figure) 34
mass range 15
mass spectrometer
and direct sample probe 151
Cl gas valve 46
circuit breaker, location (figure) 25
collision gas valve 45
diagnostics 129
electronic assemblies 46
electronics service switch, location (figure) 25
emergency shutdown 51
front panel LEDs 22
functional description 21
fuses, replacing 145
inlet gasses hardware 41
inlet valve (figure) 29
ion detection system 39
ion detection system electronic assemblies 47
ion gauge 45
ion optics 30
ion source 26–27
LEDs and system startup 59
maintenance procedures (table) 83
mass analyzer 32
Off condition 60
On/Off status of components 60
Power Entry Module, description 46
power outlet 24
Q0 quadrupole 30
resetting 58
RF voltage generation electronic assemblies 47
right-side power panel 54
shutdown 53
Standby condition 52, 60
startup 55
turbomolecular pump 44
vacuum manifold 42
vacuum service switch, location (figure) 25
vacuum system 41
vent valve 45
mass spectrometer circuit breaker
location (figure) 25
mechanical pump 44
MS main power circuit breaker
mass spectrometer components On/Off status 60
MS/MS scan modes
Neutral Loss 9
Parent 8
Product 7

N
Neutral Loss scan mode
discussed 9
example (figure) 11
illustration (figure) 10

O
octafluoronaphthalene 162
Off condition, mass spectrometer components On/Off status 60
offset voltage, quadrupole 37
oxygen trap 161

P
Parent 9
Parent scan mode
discussed 8
illustration (figure) 8
Perfluorotetracosane 157
personal computer, features 48
phthalate contamination 133
power cord, forepump (Caution) 44
Power Entry Module, description 46
Power LED
description 22
figure 22
mass spectrometer reset 59
mass spectrometer startup 57
power supply problems, troubleshooting 140
pressure, maximim allowed (table) 57
probe button 75
procedures
adding calibration compound 117
changing ionization modes 73
cleaning ion source components 85
cleaning ion source lenses 88, 95
cleaning ion volumes 88
cleaning stainless steel parts 113
complete system shutdown 53
conditioning capillary columns 125
disassembling ion source lens assembly 92, 98
displaying FC-43 spectrum 64
dissassembling ion source completely 107, 110
emergency shutdown 51
GC leak checking 125
installing capillary column 124
installing the ion volume 80
maintaining forepump 116
operating the inlet valve 73
placing system in standby 52
reassembly ion source lenses 93, 101
Index: Q

reinstalling ion source 94, 102
reinstalling ion source lenses 94, 101
reinstalling Ion Source PCB 109, 112
removing capillary column 122
removing ion source 89, 96
removing ion source lens assembly 91, 98
removing the ion volume 73
replacing filament 102, 105
replacing ion source filament 102, 105
resetting mass spectrometer 58
saving tune and calibration report 71
starting mass spectrometer 56
system startup 55
tuning and calibrating 66
Product scan mode
discussed 7
illustration (figure) 8
profile scan, defined 14
pumps
forepump 44
turbo molecular pump 44

Q

Q0 30
Q0 quadrupole
cross sectional view (figure) 31
description 30
figure 30
location (figure) 43
Q1 33
Q1 quadrupole
figure 33
scan modes 6
Q1MS and Q3MS scan modes 7
Q2 rod assembly
figure 34
scan modes 6
Q3 quadrupole
figure 33
scan modes 6
QED MS scan type 14
quadrupole 30
quadrupole mass analyzer
functional description 33
quadrupole offset voltage 37
quadrupoles
mass analysis 33
Q0, description 30
Q1 and Q3 33
RF and dc fields 34
RF and dc fields (figure) 34–35
Qual Browser
direct sample probe data 157
reviewing data 157
quantitation-enhanced data-dependent MS (QED MS) scan
type 14

R

rear power panel
location (figure) 52
reference SRM reactions 14
regulatory compliance iii
removed 98
Replaceable 161
replaceable parts 161
Replacing 120
RF / dc voltages applied to mass analyzer, discussion 33
RF voltage generation, discussion 47
right side power panel
figure 25
right-side power panel
description 54
figure 54
rod assemblies
description 34
ion transmission 6
mass analysis 6
mass analyzer(s), quadrupole 33
Q1, Q2, and Q3 (note) 7
roughing pump 44

S

Safe to Open Valve message
direct sample probe 154
safety precautions vii
safety standards iii
Save 68
scan data types
centroid scan 15
profile scan 14
Scan LED
description 23
figure 22
scan modes
data dependent 11
discussed 5
mass spectrometer 5
Neutral Loss 9
Neutral Loss, example (figure) 11
Neutral Loss, illustrated (figure) 10
Parent 8
Parent, illustrated (figure) 9
Product 7
Product, illustrated (figure) 8
Q1MS and Q3MS 7
summary (table) 6

scan types
AutoSIM 14
discussed 12
full scan 12
intelligent selected reaction monitoring (iSRM) 13
quantitation-enhanced data-dependent MS (QED MS) 14
selected ion monitoring (SIM) 12
selected reaction monitoring (SRM) 13
sectional 31–32
selected ion monitoring (SIM) scan type 12
selected reaction monitoring (SRM) scan type 13
sensitivity problems, troubleshooting 140
septum bleed contamination 133
sequence 150
creating 150
direct sample probe, running 153
Sequence Setup view 150
shut down
data system 55
emergency procedure 51
emergency, front panel system power off button 23
mass spectrometer 53
non-emergency 53
side cover plate (vacuum manifold), description 43
solvent ions masses 135
solvents
purity requirements viii
spectrometer 14
square 33
stability problems, troubleshooting 143
stainless steel, cleaning 113
Standby condition
mass spectrometer components On/Off status 60
placing system in 52
startup 55
autosampler 58
gas chromatograph (GC) 56
operating conditions, setting 58
switch 24
System Control PCB, description 46
System LED
figure 22
mass spectrometer reset 59
mass spectrometer startup 57
system power off button
emergency shutdown 23
location (figure) 52
system reset button
description 24

location (figure) 24
mass spectrometer reset 59
system shutdown
emergency procedure 51
System Tune and Calibration workspace
figure 66

T tables
Accessory Kit 161
Chemicals Kit 162
mass spectrometer components on/off status 60
mass spectrometer maintenance procedures 83
maximum allowed pressures 57
summary of scan modes 6
the 46
TRACE GC Ultra gas chromatograph
configuration 19
photo 2
transfer line
capillary column, removing 123
cross sectional view (figure) 31
figure 21
functional description 20
location (figure) 89, 96
union (figure) 123
TriPlus autosampler
configuration 18
photo 2
troubleshooting
autosampler communication 133
communication 131
contamination 133
filament and lens control 135
gas chromatograph communication 133
heated zones 136
high vacuum 138
leak checking 138
linearity 139
power supplies 140
sensitivity 140
stability 143
tuning 143
TSQ Quantum GC
autosampler 18
calibrating 63
data system 48
data types 14
diagnostics 129
front panel LEDs 22
functional block diagram (figure) 17
functional description 17
Index: V

gas chromatograph 19
ion polarity modes 5
LEDs and system startup 59
mass range 15
mass spectrometer 21
operating conditions, setting 58
overview 1
photo 2
scan modes 5
scan types 12
shutdown 55
Standby condition 52–53
startup 55
tuning 63
TSQ Tune Master Application
diagnostics 129
tune and calibration report
figure 70
saving 69
tuning
discussed 63
frequency (note) 63
running 66
tune and calibration report 69
tuning problems, troubleshooting 143
turbomolecular pump, description 44

W
WEEE compliance vii

V
Vacuum LED
and analyzer region pressure 22
description 22
figure 22
vacuum manifold
description 42
location (figure) 43
side cover plate, description 43
vacuum pumps
forepump 44
turbomolecular pump 44
vacuum service switch
description 24
location (figure) 25
On/Off status of mass spectrometer components 60
vacuum system
collision gas valve 45
Convektrom gauge 45
description 41
forepump 44
functional block diagram (figure) 42
ion gauge 45
leak checking 138
maximum allowed pressures 57

classification: TSQ Quantum XLS User Guide