838 Advanced Sample Processor
Program version 5.838.0012

Instructions for Use
These instructions are protected by copyright. All rights reserved.

Although all the information given in these instructions has been checked with great care, errors cannot be entirely excluded. Should you notice any mistakes please inform the author at the address given above.
Table of Contents

1 Introduction

1.1 Information about these Instructions for Use .. 2
1.1.1 Note .. 2
1.1.2 Notation and pictograms ... 2

2 Operation

2.1 Operating principles .. 3
2.1.1 Display .. 3
2.1.2 Keypad ... 4
2.1.3 The keys ... 5
2.1.4 Instrument dialog ... 11
2.1.5 Data input ... 13
2.1.6 Text input .. 14

2.2 Configuration ... 16
2.2.1 Miscellaneous .. 16
2.2.2 Tower settings .. 18
2.2.3 Rackdefinitionen .. 20
2.2.4 Dosing units ... 23
2.2.5 RS232 settings ... 24

2.3 Composition of a method .. 25
2.3.1 Run sequences and method parameters .. 25
2.3.2 Sample Processor settings .. 27
2.3.3 Stirrer settings .. 28
2.3.4 Dosing drive settings ... 29
2.3.5 Behavior during timeout ... 30
2.3.6 Manual stop options .. 31
2.3.7 Programming of sequences ... 32
2.3.8 LEARN mode ... 32
2.3.9 TRACE-Funktion ... 33

2.4 Commands ... 34
2.4.1 Sample Processor commands ... 34
2.4.2 Switching components ... 38
2.4.3 Dosing drive control .. 39
2.4.4 Communication commands .. 41
2.4.5 Auxiliary commands ... 45

2.5 Managing methods ... 46
2.5.1 User-defined methods ... 46
2.5.2 POWERUP method ... 47

2.6 Run control .. 48
List of Illustrations

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Key pad</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Dialog arrangement</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Selection list</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Text input</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Sample series</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>Dosino 800 with Dosing units</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>Dosing unit from below</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>Dosing unit - ports</td>
<td>59</td>
</tr>
</tbody>
</table>
1 Introduction

Like all Metrohm Sample Processors, the 838 Advanced Sample Processor can be operated as stand-alone device or be controlled entirely by a PC software (e. g. «IC Net»). In the latter case the particular functions of the instrument are invoked directly by the PC software. The keypad of the 838 Advanced Sample Processor therefore is not necessary.

In a stand-alone system with a keypad connected, the 838 Advanced Sample Processor can execute methods containing command sequences automatically. These sequences may be programmed freely in a wide range. The Sample Processor can even be operated manually to prepare a sample series.

«IC Net 2.3» (Service release 3 or later) sets a parameter in the 838 Advanced Sample Processor, which forces the Sample Processor to reset all of its device settings and delete all stored methods on startup (RAM init). This behavior is intended and necessary for controlling the Sample processor with «IC Net».

If a 838 Advanced Sample Processor is to be used as a stand-alone system with keypad control and instrument methods, which previously was controlled by «IC Net 2.3», the setting mentioned above has to be switched off beforehand. In «IC Net» uncheck the check box “Autoinit” which is accessible after right-clicking the Sample Processor icon in the working system.

The 838 Advanced Sample Processor is delivered with four standard methods for voltammetric analysis. These can be used in the connection with the Metrohm 797 VA Computrace.

Operating and programming of the 838 Advanced Sample Processor is described in this Instructions for Use.
1.1 Information about these Instructions for Use

1.1.1 Note

⚠️ Please read through these Instructions for Use carefully before you start to use this instrument. The instructions contain information and warnings that must be observed by the user in order to guarantee the safe use of the instrument.

1.1.2 Notation and pictograms

The following notation and pictograms are used in these Instructions for Use:

<table>
<thead>
<tr>
<th>Location</th>
<th>Menu item, parameter or input value</th>
</tr>
</thead>
<tbody>
<tr>
<td><OK></td>
<td>button, key</td>
</tr>
<tr>
<td>🚨</td>
<td>Danger</td>
</tr>
<tr>
<td>🚨</td>
<td>This symbol indicates a possible risk of death or injury to the user if the instructions are not followed correctly.</td>
</tr>
<tr>
<td>🚨</td>
<td>Warning</td>
</tr>
<tr>
<td>🚨</td>
<td>This symbol indicates a possible risk of damage to the instruments or their components if the instructions are not followed correctly.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Attention</td>
</tr>
<tr>
<td>⚠️</td>
<td>This symbol indicates important information. Read the information provided before you continue.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Remarks</td>
</tr>
<tr>
<td>⚠️</td>
<td>This symbol indicates additional information and tips.</td>
</tr>
</tbody>
</table>
2 Operation

As well as the basic functions that can be carried out manually, this section also describes the configuration of the Advanced Sample Processor. Detailed descriptions of the way that run sequences are created and how methods are managed are given.

2.1 Operating principles

2.1.1 Display

The keypad (SC Controller) display consists of two lines each with 24 characters.

The first line is used as the title line and shows the current method together with the number of processed samples. In the editing mode the menu titles are shown here.

The second line is used as the status line and shows specific activities that depend on the operating condition. It is used as the input line in the editing mode.

Normal state

Sample counter ⬇
Method name ➔
Pump status ➔

PUMP--++STIR+---- ready

Instrument status

Stirrer status

Method sequence

Running sequence ➔

START 03 WAIT 11 s

Parameter

Current command with line number

Editing mode

Menu title

Menu line or command ➔

>Sample sequence
1 MOVE 1 : sample

2nd parameter

1st parameter
2.1 Operating principles

2.1.2 Keypad

Below the 2-line display there are three LEDs. The two LEDs 'FILL' and 'INJECT' indicate the current position of the injection valve. The LED 'LEARN' lights up when the learn mode is activated.

Most keys have two functions, depending on whether the Sample Processor is in the normal operating mode or in the editing mode.

Selection menus can be accessed with the upper row of keys («CONFIG», «PARAM», «USER METHOD»). The other keys on the left-hand side of the keypad are used for navigation in the menus or for al-
2.1 Operating principles

etering parameters. For entering parameters the numerical block on the right-hand side of the keypad is also available.

The lowest row of keys (\texttt{<HOLD>}, \texttt{<STOP>}, \texttt{<START>}) are used for the direct control of a method sequence.

If the Sample Processor is integrated in a PC-controlled automation system and is entirely controlled via the RS232 interface, it is possible to operate the instrument without the keypad.

2.1.3 The keys

The menu keys

The \texttt{<CONFIG>} key opens the selection menu for the configuration of the Sample Processor.

The \texttt{<PARAM>} key opens the selection menu for editing the run sequences and method parameters.

The \texttt{<User Method>} key opens the selection menu for opening, saving and deleting default or user-defined methods.

Lift operation and sample positioning keys

With the \texttt{<\uparrow>} and \texttt{<\downarrow>} keys the lift can be moved up and down respectively. The lowest possible lift position is defined by the configuration parameter ‘\texttt{max. stroke path}’.

\begin{itemize}
 \item In the editing mode the arrow keys \texttt{<\uparrow>} and \texttt{<\downarrow>} are used for navigation in the particular menu or submenu.
\end{itemize}

With the \texttt{<HOME>} key the lift is returned to the rest position (0 mm), i.e. to the uppermost stop. \texttt{<END>} moves the lift to the predefined working position (see p. 20).

\begin{itemize}
 \item In the editing mode the \texttt{<HOME>} and \texttt{<END>} keys move to the first and last line of the menu or submenu respectively.
\end{itemize}

With the \texttt{<\leftarrow NEXT>} and \texttt{<\rightarrow PREV>} keys the sample rack can be rotated forward or backward by one position. If necessary, the lift is automatically raised to the shifting position. When the rack position has been reached the robotic arm will automatically be aligned to the corresponding rack position.

\begin{itemize}
 \item During data input the \texttt{<SELECT>} key is used to select a pre-defined entry from a selection list.
\end{itemize}
2.1 Operating principles

The `<SELECT>` key allows to select from a given list of entries when editing a parameter.

Editing and sequence control

When editing a method sequence the `<INSERT>` and `<DELETE>` keys are used to insert or delete a command line.

The `<CLEAR/RESET>` key is used to initialize the Sample Processor and dosing devices. This corresponds to the switching-on process.

- During data input the `<CLEAR/RESET>` key is used to delete an entry or to reset the default value. In text entry mode the last character is deleted.

During a method sequence the `<QUIT>` key can be used to terminate the command which is currently being carried out. The following command is executed.

- During data input the `<QUIT>` key is used to terminate an entry. During navigation in a menu the `<QUIT>` key is used to exit the active (sub)menu and select the next highest menu level.

During data input the `<ENTER>` key is used to accept the entry.

Command keys

The `<SAMPLE>` key is used to set the current sample position. This has to be done before a sample series is run.

At the start of a method this position is assumed to be the first sample in a series. If no sample position has been set then the Sample Processor will select rack position 1.

With `<MOVE>` a vessel or a particular rack position can be moved to the active tower or a robotic arm can be swung to an external position. As well as the actual sample beaker a maximum of 16 possible special beakers can also be defined. A particular rack position can be moved to directly by entering the position number (with the numerical keys).

The direction and speed of rotation can be altered in the parameter menu.
Important:
For safety reasons it is only possible to rotate the sample rack when the lift or both lifts are located in the shifting position or above it. During a rack rotation the lift (or both lifts) are automatically first raised to the predefined shift height.

When a method is started a second time, without switching off and on again, the last accessed sample position is memorized and be applied in the next method run.

Raises or lowers the lift. The predefined lift positions (working position, rest position, rinsing position, shifting position, special position) can be selected with the <SELECT> key. They can be entered and saved separately for each rack in the configuration menu.

As well as the predefined lift positions it is also possible to enter absolute lift positions in mm via the numerical keys.

The <PUMP> key is used for switching the peristaltic pump. The pump rate can be selected in 15 steps. Selecting a sign (+ or –) with the pump rate allows to set the direction of the rotation of the pump drive.

Under <PARAM>, >manual stop you can define whether the peristaltic pump should be switched off with the <STOP> key or not.

The <STIR> key is used for controlling the stirrers. A stirrer can be switched on permanently or switched on for a given period and then switched off again. The <SELECT> key is used to select both the stirrer and the function. The current status of the stirrer is shown directly in the display.

Example:

<table>
<thead>
<tr>
<th>STIR</th>
<th>Duration</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>ON s</td>
<td>STIR +-</td>
</tr>
<tr>
<td>MSB2</td>
<td>10 s</td>
<td>STIR 10 s</td>
</tr>
</tbody>
</table>

In this case in the first line the stirrer at tower 1 is switched on. The stirrer is selected with the <SELECT> key. As can be seen in the second line, the duration of the stirring process can also be entered. The stirring rate can be set for each stirrer in the parameter menu. Under <PARAM>, >manual stop you can define which stirrers can be switched off with the <STOP> key.

The <DOS> key is used to control the connected dosing devices. Both positive and negative volumes can be dosed. Negative volumes are used for aspirating liquids, e.g. during pipetting.

As well as entering the volume to be dosed (with the numerical keys), <SELECT> can also be used to select additional functions:

- Filling the dosing or exchange unit (fill)
- Initializing the exchange of a Dosing unit (release)
- Preparing the tubing systems and cylinder (prep.)
- Emptying the tubing system and the dosing cylinder (empty)
- Ejecting the cylinder contents (Eject)
2.1 Operating principles

- Driving the piston to the max. volume
- Compensating for the play between piston and spindle (compen.)
- Valve switching (port)

The first parameter of the DOS command stands for the number of the dosing instrument (1…3, * = all) and the Dosino port (e.g. 1.1 stands for Dosino 1, port 1), the second parameter for the function or the volume to be dosed.

Example:

DOS: 2.1 <ENTER> 4.51 ml <ENTER>
DOS: 2.* <ENTER> <SELECT> ... fill <ENTER>

The dosing and filling rates can be set in the parameter menu.

Shows the incoming signals or data from the Remote or the serial RS232 interfaces. This function is used for checking the data communication with connected devices. The first parameter shows the selected interface. The second parameter shows the signals or data that are received directly.

If the parallel Remote interface (Rm) is selected then the signal states of the incoming Remote lines are shown in binary form (1 = line active, 0 = line inactive).

If the serial RS232 interface (RS) is selected then the data string received via this interface will be shown (14 characters per line).

Controls external devices via the Remote or RS232 interface. The first parameter sets the interface (<SELECT>). The second parameter defines the status of the lines (Remote lines) or data (RS232 interface) to be outputted via the selected interface.

2nd parameter, for Remote interface
Binary pattern with 14 digits (0, 1 or *) for the 14 output lines or predefined binary pattern (<SELECT> selection), e.g. PUMP R/S 1, INIT etc.

2nd parameter, for RS232 interface
Data string with up to 14 alphanumeric characters (any). The default value "&M;$G" (for starting Metrohm instruments) can be set with <CLEAR>.

The <WAIT> key has no function in the normal operating condition. It is used to insert the WAIT command in a run sequence.
The `<EXT>` key is used to switch on and off the pump connectors on the rear side of the tower. On entry of the address of the connector (1 or 2) the current state of the connected pump is switched, i.e. a currently active pump is switched on. The display indicates the current state of the pump connectors (i.e. `PUMP++; +` means active, `-` means inactive).

Example:

```
PUMP on/off no. ? <2>  display: PUMP -+++  
PUMP on/off no. ? <2>  display: PUMP ----  
```

In this case pump 2 is switched on and off.

Under `<PARAM>` manual stop you can define whether the pump connectors should be switched off with the `<STOP>` key or not.

The `<VALVE>` key is used to switch the position of the injection valve at the tower of the Advanced Sample Processor.

Example:

```
VALVE:            inject  
<ENTER> switches the injection valve to the displayed position.  
This function is only working in the Sample Processor models 2.838.0x20 with built-in injection valve.  
```

With the `<RACK>` key the sample rack can be initialized. The connected peripheral devices (e.g. Dosimats, Dosinos) are not affected by this. The sample rack and lift (both lifts in 2-tower versions) are moved to the zero position and automatic rack recognition is carried out. The `SAMPLE` variable (= rack position of the current sample) is reset to 1.

Sequence control

The `<START>` key starts a method. A start is only possible when the Advanced Sample Processor is in the normal operating condition, i.e. when the display shows `ready`.

If `<START>` is activated after an interruption (`<HOLD>` , see below), then the sequence continues with the next command.

The `<START>` can also be used to carry out a single command line in a run sequence (`TRACE` function), see p. Fehler! Textmarke nicht definiert..
The <STOP> key ends a method.

If a sample series is stopped manually with <STOP> then the final sequence of a method will not be carried out. When the <STOP> key is pressed the functions listed in the parameter menu under >manual stop will be carried out.

The <HOLD> key interrupts a method sequence.

Connected peripheral devices will not be stopped automatically. Only the method sequence will be interrupted. In the HOLD condition a method can be completely terminated with <STOP> or continued with <START>.

After an error message in the method sequence the Advanced Sample Processor switches automatically to the HOLD condition after <QUIT>.
2.1.4 Instrument dialog

The instrument dialog of the Advanced Sample Processors is arranged in menu levels in which the following rules apply:

Main menu

The <CONFIG>, <PARAM> and <USER METHOD> keys of the Sample Processor open a main menu whose thematically arranged submenus are accessed by repeatedly pressing this key or with <↓>. The name of the main menu appears in the first line.

Submenu

Each submenu has its own title which is indicated by ">" and appears in the lower line of the display. From the title you can use <ENTER> to access the individual questions with which the most important instrument settings can be altered. The first line of the display always shows the name of the active submenu.

Navigation in the menus is by the cursor keys; with <HOME> you can access the first line of the menu and with <END> the last one.

<QUIT> exits the active menu and accesses either the next superior menu or the normal operating condition.

<ENTER> always opens a submenu or confirms the data input of the lowest menu level.

Input lines

For input lines without ":" the values can be entered by the numerical keys. The set value is accepted with <ENTER> and the next line appears.

For input lines with ":" predefined values can be selected with the <SELECT> key. <ENTER> accepts the set value and the next line appears.

Depending on the parameter, <CLEAR> is used to set the initial value. The <CLEAR> key is also used to reject incorrectly entered values.

<QUIT> exits the questions and returns to the submenu.

The following schematic diagram shows the instrument dialog arrangement.
2.1 Operating principles

Fig. 2 Dialog arrangement
2.1 Operating principles

2.1.5 Data input

Input line

Either one or two parameters can be entered in a menu line or a sequence. A blinking block cursor indicates where a parameter can be entered.

<table>
<thead>
<tr>
<th>Command</th>
<th>1st parameter</th>
<th>2nd parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample sequence</td>
<td>04 STIR</td>
<td>T1 : 1 s</td>
</tr>
</tbody>
</table>

Switching between the parameters is carried out with the arrow keys `<→>` and `<←>`. `<ENTER>` moves the cursor automatically to the right, `<QUIT>` moves it to the left.

<Select> list

Data can usually be entered directly by the numerical keys of the keypad. For entries marked by a colon the `<SELECT>` key can be used to display a selection of entries. This selection is cyclically arranged like a revolving drum.

Example:

<table>
<thead>
<tr>
<th>Command</th>
<th>1st parameter</th>
<th>2nd parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS232 settings</td>
<td>baud rate:</td>
<td>9600</td>
</tr>
</tbody>
</table>

Fig. 3 Selection list
2.1.6 Text input

The text editor can be used wherever provision is made for the entry of a text.

Numbers can be entered directly via the keypad.

The "<" or ">" keys open the text editor. With "<" an existing character string is deleted and the text cursor moves to the left-hand end of the input field. With ">" an existing character string is retained, the text cursor moves to the last character of the existing text. A character string is displayed that consists of all the characters that can be entered in alphabetic order. The currently selected character always blinks (text cursor).

Character selection

The "<" and ">" keys move the character string made up of all the selectable characters (upper and lower case letters, numbers and special characters, arranged alphabetically) in the selected direction past the text cursor. Pressing either of these keys once moves the character string in the corresponding direction by one position. Rapid character string movement is achieved by keeping the key pressed down.

Confirming character selection

The <ENTER> key appends the character currently under the text cursor to the existing text line. When the complete width of the text input field has been filled the text input mode is exited and the text line is accepted with <ENTER>.

Delete character

The <CLEAR> key deletes the last character of an existing text line. The text cursor automatically moves one character to the left.

Ending text input

<QUIT> exits the text input mode. The displayed text line can then be accepted with <ENTER> or rejected by pressing <QUIT> a second time.
Arrangement:

>store method
method: ********

"<" or ">"

<QUIT>

accept

<ENTER>

reject

Fig. 4 Text input

The figure above shows how a character string can be entered, e.g. for naming a method. Text input is concluded with <QUIT>. The whole of the entered character string is then shown and can be accepted with <ENTER> or rejected with <QUIT>.
2.2 Configuration

Main menu:

- Open submenu with <ENTER>
- Use <↑> or <↓> to move up and down by one menu item
- Use <HOME> or <END> to move to the first or last menu item
- Use <QUIT> to return to operating condition

2.2.1 Miscellaneous

Submenu for basic settings

Open the submenu with <ENTER>

Select dialog language

Set display contrast

Beep for warnings on or off

Switch on external start via Remote line (Input 7)

Normally the Sample Processor takes over the complete run control for a sample series as the “Master”. This may be unwanted, particularly if an automated system has been set up that includes instruments that are not from Metrohm. This is why the Sample Processor can also be started from any external instrument via the Remote interface.

With external Start: ON the run sequences of the Sample Processor will be started as soon as input line 7 is activated at the Remote interface (low level).
The run sequences of the Sample Processor will be stopped when input line 6 is activated (low level). The technical details can be found in the 8.789.1033 Technical Reference of the Sample Processors.

Submenu for running time meter, open with <ENTER>

Shows the elapsed time

<table>
<thead>
<tr>
<th>>>running time meter</th>
<th>elapsed time 0.0 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0..9999 h</td>
</tr>
</tbody>
</table>

Warning limit for running time meter

<table>
<thead>
<tr>
<th>>>running time meter</th>
<th>warning OFF h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OFF, 0..9999 hours</td>
</tr>
</tbody>
</table>

The running time meter is used to support the regular maintenance of the Sample Processor. If a warning limit is entered then, when this period has elapsed, a message will appear indicating that maintenance is required.

Name of the instrument for identification

<table>
<thead>
<tr>
<th>device label</th>
<th>8 ASCII characters</th>
</tr>
</thead>
</table>

Program version

<table>
<thead>
<tr>
<th>program</th>
<th>5.838.0012</th>
</tr>
</thead>
<tbody>
<tr>
<td>read only</td>
<td></td>
</tr>
</tbody>
</table>
2.2 Configuration

2.2.2 Tower settings

<table>
<thead>
<tr>
<th>configuration</th>
<th>Submenu for basic settings for the tower</th>
</tr>
</thead>
<tbody>
<tr>
<td>>tower 1</td>
<td>Open the submenu with <ENTER></td>
</tr>
</tbody>
</table>

Max. lift range for Lift 1

This max. stroke path setting is important for safety reasons. Correct entry of this value can prevent, that i.e. an injection needle or tubing will be bent. The working head cannot move any lower than the position entered here (0 mm = upper stop of lift). Make these settings before you edit the rack definitions.

Sets the minimum required beaker radius for processing a sample

This is also a safety setting. In order to prevent a fully equipped, wide titration head from trying to enter a narrow sample beaker a limit for the minimum necessary beaker radius can be entered here. During a method sequence the value entered here will be compared with the value given for the effective beaker radius in the rack table before the lift is lowered and, if necessary, an error message will be produced. Entering * prevents a comparison from being made.

If a 786 Swing Head equipped with a robotic arm is mounted on the Sample Processor then it is essential that the correct settings for the mounted robotic arm are entered, as otherwise the instrument will not be able to position it exactly.

Each of the following settings can be interactively defined with the LEARN function. Press the <LEARN> key and then move the lift or robotic arm with the arrow keys <Ì> and <Î> or <ÌÌ> and <ÌÌÌ>. The set values can be accepted with <ENTER> and corrected later.

For further explanations of the LEARN mode, see section 2.3.8.

Setting the rinsing height for external positions *)

Setting the swing height for external positions *)

*) The symbol * indicates that the setting is a safety parameter.
2.2 Configuration

Swing angle for external position 1 *)

<table>
<thead>
<tr>
<th>>>swing head 1</th>
<th>external pos.1</th>
<th>117.00°</th>
</tr>
</thead>
</table>

Offset...84.00...max. angle+offset
0° = points to rack center

The swing angle for the external positions is entered as an absolute angle. The input limits are defined by the offset of the Swing Head drive (approx. 9°) and the set max. swing angle range.

Setting the working height for external position 1 *)

<table>
<thead>
<tr>
<th>>>swing head 1</th>
<th>work position1</th>
<th>0 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0...235 mm</td>
</tr>
</tbody>
</table>

Swing angle for external position 2 *)

<table>
<thead>
<tr>
<th>>>swing head 1</th>
<th>external pos.2</th>
<th>117.00°</th>
</tr>
</thead>
</table>

... up to external pos. 4

*) can be set with LEARN function
2.2 Configuration

2.2.3 Rackdefinitionen

<table>
<thead>
<tr>
<th>configuration >rack definitions</th>
<th>Submenu for defining individual racks</th>
</tr>
</thead>
<tbody>
<tr>
<td>>rack definitions</td>
<td>Open the submenu with <ENTER></td>
</tr>
</tbody>
</table>

Use <QUIT> for next higher level

In order to make a modification to the definition of a sample rack the rack data must first be loaded. The data of the Metrohm standard racks is stored under their ordering number.

>recall rack
name: 6.2041.450

Name of the rack to be loaded

The <SELECT> key can be used to make a selection from the saved rack data. The rack data is loaded with <ENTER>. The first selection to appear is the rack name of the currently attached rack.

>recall rack
code 000001

Magnet code of the rack
See table on p. 65.

The magnet code is used for the unambiguous identification of the rack. The magnet code is recognized during the initialization of the rack. This is why the <RACK> key should be pressed whenever a rack is changed.

For security reasons the max. stroke path should be set before modifications of the lift positions are made, see section 2.2.1.

>recall rack
work position T1 0 mm
0...235 mm

Working position for sample positions *)
(in mm from upper stop point)

>recall rack
rinse position T1 0 mm
0...235 mm

Rinsing position for sample positions *)
(in mm from upper stop point)

>recall rack
shift position T1 0 mm
0...235 mm

Shifting position for sample positions *)
(in mm from upper stop point)

>recall rack
special pos. T1 0 mm
0...235 mm

Special position for sample positions *)
(in mm from upper stop point)

>recall rack
beaker radius * mm
*, 1...100 mm

Effective beaker radius for the sample positions on the rack
* = any value

This setting is required for the check of the beaker radius, see p. 17.
2.2 Configuration

Metrohm 838 Advanced Sample Processor

>recall rack
beaker sensor: off

Tower, SwingH, off

Not implemented.

>recall rack
rack offset 0.00°

-5.00…0.00…5.00°

*) All the above lift positions and the rack offset can be set by using the <LEARN> function.

Special beaker positions

>>>recall rack
>>>special positions

Submenu special beaker positions
Open with <ENTER>

Special beaker positions are predefined places on a sample rack that are not treated as sample positions. They can be occupied by rinsing beakers or conditioning beakers and selectively addressed during a run sequence. Up to 16 special beaker positions can be defined per rack. For each special beaker the work position of the lift and the beaker radius can be set, see above.

Selection of special beaker

>>>special positions
special beaker 1

1…16

Rack position of the special beaker

>>>special positions 1
rack position 0

0…number Pos.
0 = not defined

e tc. up to special beaker 16

>rack definitions
>>store rack

Save rack definitions

In order to store modifications to the definition of a sample rack the submenu >>store rack is selected.

>store rack
name: 6.2041.310

10 ASCII characters

Name of rack

With the <SELECT> key you can select one of the existing rack names. The rack data is stored with <ENTER>. Any rack name can be used. The input of any rack name can be made directly via the numerical keys or in the text
2.2 Configuration

input mode, see p. 14. Selection of the alphanumerical characters with the < and > keys or <PRINT> and <RACK>.

>rack definitions
>>delete rack

Delete rack definitions

The submenu >>delete rack must be selected if a rack definition is to be deleted.

>delete rack
name: 6.2041.310

Name of the rack

The <SELECT> key can be used to select one of the existing rack names. <ENTER> confirms the selection. <QUIT> stops the deletion process. Before the deletion a question appears.

>rack definitions
delete 6.2041.310 ?

<ENTER> confirms the deletion. <QUIT> stops the deletion process.

⚠️ When the submenu ’>rack definitions’ is exited without saving modified data a request appears about saving the rack data.

>rack definitions
overwrite 6.2041.310 ?

Confirm the question (store the rack definitions) by pressing the <ENTER> key. Reject storage with <QUIT>.
2.2.4 Dosing units

Metrohm Exchange units (with 685 and 805 Dosimats as the dosing drive) and Dosing units for the Dosino 700 and 800 systems can be used with the Sample Processors. The following settings are used for preparing the Dosing units (PREP function). The tubing dimensions (length and diameter) are used for calculating the rinsing volumes.

If Exchange units are used then only the dosing and filling rate is effective (max. rate).

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Submenu for the Dosing unit settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>>Dosing units</td>
<td>Open the submenu with <ENTER></td>
</tr>
</tbody>
</table>

Use <QUIT> for next higher level

Selection of Dosing unit or dosing device connection

The Dosing unit selection must be confirmed with <ENTER>. It will then be shown in the first menu line.

Max. dosing and filling rate for Port 1 (depends on cylinder size)

Length of tubing at Dosino Port 1

Diameter of tubing at Dosino Port 1

Max. dosing and filling rate for Port 2 (depends on cylinder size)

Input of tubing parameters for all four ports of a Dosing unit.
2.2.5 RS232 settings

The correct settings of the interface parameters of the serial RS232 interface is essential for the perfect functioning of data transmission to and from the Sample Processor. This includes the control of the instrument by using a PC software such as «IC Net».

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Submenu for serial interface settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>>RS232 settings</td>
<td>Open the submenu with <ENTER></td>
</tr>
</tbody>
</table>

Use <QUIT> for next higher level

- **Transmission rate in baud**
 - >RS232 settings baud rate: 9600
 - 300, 600, 1200, 2400, 4800, 9600, 19200

- **Number of data bits**
 - >RS232 settings data bit: 8
 - 7, 8

- **Number of stop bits**
 - >RS232 settings stop bit: 1
 - 1, 2

- **Parity selection**
 - >RS232 settings parity: none
 - even, odd, none

- **Handshake selection**
 - >RS232 settings handshake: HWs
 - HWs, SWchar, SWline, none

- **Character set for printer and PC (printer emulation)**
 - >RS232 settings character set: IBM
 - IBM, HP, Epson, Seiko, Citizen

For data transmission using personal computers you should select **IBM**.

- **Switch data reception on/off**
 - >RS232 settings RS control: ON
 - ON, OFF

If Remote control is switched off then no data will be received.
2.3 Composition of a method

All the settings of the parameter menu form a method and can be stored as such.

2.3.1 Run sequences and method parameters

Main menu:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Number of samples: rack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>Number of samples:</td>
<td></td>
</tr>
<tr>
<td>Main menu:</td>
<td></td>
</tr>
<tr>
<td>parameters</td>
<td></td>
</tr>
<tr>
<td>>start sequence</td>
<td></td>
</tr>
<tr>
<td>parameters</td>
<td></td>
</tr>
<tr>
<td>>sample sequence</td>
<td></td>
</tr>
<tr>
<td>parameters</td>
<td></td>
</tr>
<tr>
<td>>final sequence</td>
<td></td>
</tr>
<tr>
<td>parameters</td>
<td></td>
</tr>
<tr>
<td>>changer settings</td>
<td></td>
</tr>
<tr>
<td>parameters</td>
<td></td>
</tr>
<tr>
<td>>stirring rate</td>
<td></td>
</tr>
<tr>
<td>parameters</td>
<td></td>
</tr>
<tr>
<td>>dosing unit def.</td>
<td></td>
</tr>
<tr>
<td>parameters</td>
<td></td>
</tr>
<tr>
<td>>timeout settings</td>
<td></td>
</tr>
<tr>
<td>parameters</td>
<td></td>
</tr>
<tr>
<td>>manual stop</td>
<td></td>
</tr>
</tbody>
</table>

Submenus:

In each of the submenus >start sequence, >sample sequence and >final sequence up to 99 command lines can be entered as a run sequence. The commands can be entered directly via the keypad. The command keys on the right-hand side of the keypad are available.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Commands for the start sequence of the sample series</th>
</tr>
</thead>
<tbody>
<tr>
<td>>start sequence</td>
<td>Open the submenu with <ENTER></td>
</tr>
</tbody>
</table>

The start sequence is **carried out once** at the start of a sample series.
2.3 Composition of a method

<table>
<thead>
<tr>
<th>parameters >sample sequence</th>
<th>Commands for the processing of each sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Open the submenu with <ENTER></td>
</tr>
</tbody>
</table>

The sample sequence is carried out when each individual sample in a sample series is processed.

<table>
<thead>
<tr>
<th>parameters >final sequence</th>
<th>Commands for the final sequence of the sample series</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Open the submenu with <ENTER></td>
</tr>
</tbody>
</table>

The final sequence is carried out once at the end of a sample series. For example, it can be used to move to a rinsing or conditioning beaker.

Series operating

![Diagram of series operating](image)

Fig. 5 Sample series

Creating methods

In principle the same input rules apply for creating run sequences as for manual operation, i.e. after selecting a command and entering the necessary parameters the entry is confirmed with <ENTER>. The next command line is then selected and a new command can be entered.

For more comfortable parameter input the LEARN function is available for certain commands. It can be used to accept direct values that are set when a single command is carried out manually. Please refer to p. Fehler! Textmarke nicht definier.t for details.

The TRACE function can be used to execute each entered command line individually in the editing mode. See p. 33.

Navigation in a sequence is the same as in other menus. In addition, the <INSERT> and <DELETE> keys are available.

<INSERT> inserts a new command line above the current line of a sequence. It is automatically occupied with the NOP command, which has no function. The following lines move downward by one position.

<DELETE> deletes the current line of a sequence. The following lines move upward by one position.
2.3.2 Sample Processor settings

<table>
<thead>
<tr>
<th>parameters</th>
<th>Submenu for setting the Sample Processor functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>>changer settings</td>
<td>Open the submenu with <ENTER></td>
</tr>
</tbody>
</table>

>changer settings

rack name:
- *: 10 ASCII characters
- * = no particular rack

With this setting the user can be forced to use a particular rack for the selected method. If this is not required then **rack name:** * must be selected.

lift rate T1: 25 mm/s
- 5...25 mm/s

shift rate: 20°/s
- 3...20

shift direction: auto.
- auto. = the Sample Processor selects the shortest path for the rotation itself.

rotat. increment: 5.00°
- 0.00...5.00..270.00°

swing rate T1: 55°/s
- 10...55

swing increment: 10.00°
- 0.00..10.00..180

on beaker error: MOVE

Not implemented.
2.3 Composition of a method

2.3.3 Stirrer settings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Submenu for the stirrer settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>>stirring rates</td>
<td>Open the submenu with <ENTER></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stirrer Tower</th>
<th>Stirring Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tower 1</td>
<td>Stirring speed at the tower</td>
</tr>
<tr>
<td>Tower 2</td>
<td>Stirring speed of MSB stirrer</td>
</tr>
<tr>
<td>Tower 3</td>
<td>Stirring speed of MSB stirrer</td>
</tr>
</tbody>
</table>

- **Stirrer Tower 1:** Stirring speed of the stirrer at the tower (stirrer models 802, 741, 722)
- **Stirrer MSB1:** Stirring speed of MSB stirrer 1 (stirrer models 801, 804)
- **Stirrer MSB2:** Stirring speed of MSB stirrer 2 (stirrer models 801, 804)
- **Stirrer MSB3:** Stirring speed of MSB stirrer 3 (stirrer models 801, 804)
2.3 Composition of a method

2.3.4 Dosing drive settings

Both Dosinos (models 700 and 800, with Dosing units) and Dosimats (models 685 and 805, with exchange units) can be used as dosing drives on an Advanced Sample Processor. However, free assignment of the ports for the various functions is only possible with Dosinos.

<table>
<thead>
<tr>
<th>parameters</th>
<th>Submenu for setting the Dosing units</th>
</tr>
</thead>
<tbody>
<tr>
<td>>Dosing unit def.</td>
<td>Open the submenu with <ENTER></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Submenu for setting the Dosing units</th>
</tr>
</thead>
</table>

> Dosing unit def.

dosing drive 1

Selection of the dosing device, or the connection

1…3

After entering the connection of the dosing device (see Installation instructions 8.1303) and confirming with <ENTER> the settings for the selected dosing device should then be made.

<table>
<thead>
<tr>
<th>Submenu for setting the Dosing units</th>
</tr>
</thead>
</table>

> dosing drive 1
dos. rate max. mL/min

Set the dosing rate

0.01…160 mL/min, max.

The maximum possible dosing rate depends on the size of the dosing cylinder (rule of thumb: cylinder volume x 3.3).

<table>
<thead>
<tr>
<th>Submenu for setting the Dosing units</th>
</tr>
</thead>
</table>

> dosing drive 1
fill. rate max. mL/min

Set the filling rate

0.01…160 ml/min, max.

The maximum possible filling rate depends on the size of the dosing cylinder (rule of thumb: cylinder volume x 3.3).
The following entries only apply to 700/800 Dosinos. Details about Dosinos and Dosing units can be found on p. 54ff.

<table>
<thead>
<tr>
<th>Submenu for setting the Dosing units</th>
</tr>
</thead>
</table>

> dosing drive 1
dosing port 1

Define standard dosing port 1

1…4

> dosing drive 1
dosing 2 port 3

Define standard dosing port 2

1…4

> dosing drive 1
filling port 2

Define standard filling port

1…2…4

> dosing drive 1
rinsing port 2

Define standard rinsing inlet (if Dosing unit is exchanged)

1…2…4

> dosing drive 1
preparation port 1

Define standard outlet for the preparation cycle

1…4
2.3 Composition of a method

2.3.5 Behavior during timeout

Metrohm Sample Processors are designed to communicate with other instruments. In particular, this includes the coordination between the Sample Processor and devices connected to it. In the method sequence the \texttt{SCAN} command can be used to check whether an instrument is ready or to ask for an acknowledgement after a measurement has been made. However, it may happen sometimes that problems occur during a determination run and that the expected signal from the connected instrument is not received. This is known as a timeout.

This means that it is possible to define a maximum waiting time that will always be allowed to elapse if a timeout occurs. In addition, the behavior of the Sample Processor when this waiting period has elapsed (\texttt{SCAN} timeout) can also be defined.

\begin{center}
\begin{tabular}{|l|l|}
\hline
\texttt{parameters} & Submenu for behavior if a \texttt{SCAN} timeout occurs \\
\hline
\texttt{timeout settings} & Open the submenu with <ENTER> \\
\hline
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{|l|l|}
\hline
\texttt{timeout settings} & \texttt{off,0…999 min} \\
\hline
\texttt{SCAN timeout:} & Waiting time if a \texttt{SCAN} timeout occurs \\
\texttt{off,0…999 min} & When the waiting time has elapsed the function defined below will be carried out. \\
\hline
\texttt{on SCAN timeout:} & Behavior if \texttt{SCAN} timeout occurs \\
\hline
\texttt{error} & If \texttt{error} is set then the run sequence will be interrupted and an error message will be shown. Otherwise the sequence will be continued. \\
\texttt{continue} & \\
\hline
\end{tabular}
\end{center}
2.3.6 Manual stop options

The following settings can make a great contribution to the comfortable operation of the Sample Processor. A definition is made of what is to happen when the <STOP> key is pressed. This could be a normal manual cancellation of a running method, or an emergency stop of the complete system. Depending on the arrangement of the automated system and the type of application, it can be laid down in detail how the individual instrument components and connected instruments are to react when the <STOP> key is pressed.

<table>
<thead>
<tr>
<th>parameters</th>
<th>manual stop options</th>
</tr>
</thead>
<tbody>
<tr>
<td>>manual stop</td>
<td>Submenu for reaction after manual stop</td>
</tr>
<tr>
<td>CTL Rmt:</td>
<td>Open the submenu with <ENTER></td>
</tr>
</tbody>
</table>

Set signal lines of the Remote interface

14 bit (1,0 or *)

Connected peripheral devices can be stopped automatically. The 14 signal lines of the Remote interface can be set as required, see also p. 68ff.

Command or character string, for output via the RS232 interface

14 ASCII characters
default value '&M;$S' (= stops a Metrohm device)

Connected peripheral devices (e.g. Metrohm devices) can be stopped automatically. Any character string can be transmitted. For details of the serial RS232 interface see "Technical Reference".

Switches the peristaltic pump

(cont. = retain condition)

Switches the pump connectors

(cont. = retain condition)

This setting applies to both pump connectors.

Switches the stirrer at the tower

(cont. = retain condition)

Switches the stirrer at MSB connection 1

(cont. = retain condition)

Switches the stirrer at MSB connection 2

(cont. = retain condition)

Switches the stirrer at MSB connection 3

(cont. = retain condition)
2.3 Composition of a method

2.3.7 Programming of sequences

The creation of sequences is done in the submenus ‘start sequence’, ‘sample sequence’ and ‘final sequence’, which are accessible via the parameter menu.

Each sequence is organized in lines. In each line, the commands that are on the numerical keypad as alternate functions can be used to enter commands. After selecting a command and entering the necessary data, the entry is accepted with <ENTER>. The line number is visible in the display. 99 lines per sequence are possible.

Navigation in a sequence is accomplished as in the other menus. In addition the <INSERT> and <DELETE> keys can be used.

- <INSERT> adds a new command line above the current line in a sequence. It is automatically occupied by the "NOP" command that has no function. The following lines are shifted one line downwards.

- <DELETE> deletes the current line in a sequence. The following lines are shifted one line upwards.

The "LEARN" mode is available for the easy entry of parameters.

Furthermore the "TRACE" function can be used to execute every command line step by step.

2.3.8 LEARN mode

When editing a method, the parameters of a command are most easily determined experimentally, i.e. by manual execution, and it is for this reason that certain commands are "teachable". The LEARN function makes the manual execution of particular changer commands possible during the editing of a sequence. The resulting parameters (for example, the lift position or the status of the input lines) can be taken over in the current command line. The LEARN function can be used repetitively. When times or volumes are "learned", the repetitive values are added up.

Procedure for creating a method

- Enter a command or select an existing command line.
- Press the <LEARN> key.
 - Function is started, "LEARN' LED lights up.
 - Press the <LEARN> key.
 - Function is stopped, "LEARN' LED blinks.
 - With the <ENTER> key, accept the value (or re-start the LEARN function).
"LEARN" LED goes out, edit next command line.

Die LEARN-Funktion steht für folgende Befehle zur Verfügung:
2.3 Composition of a method

Command Teachable parameter Mode of function

<table>
<thead>
<tr>
<th>Command</th>
<th>Teachable parameter</th>
<th>Mode of function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFT</td>
<td>Lift position in mm</td>
<td>absolute</td>
</tr>
<tr>
<td>PERISTALT</td>
<td>Pump time in sec</td>
<td>additive</td>
</tr>
<tr>
<td>PUMP</td>
<td>Pump time in sec</td>
<td>additive</td>
</tr>
<tr>
<td>WAIT</td>
<td>Waiting time in sec</td>
<td>additive</td>
</tr>
<tr>
<td>SCN Rm</td>
<td>Status of the 8 remote lines</td>
<td>"live" value</td>
</tr>
<tr>
<td>SCN RS</td>
<td>Character sequence received</td>
<td>"live" value</td>
</tr>
</tbody>
</table>

2.3.9 TRACE-Funktion

The "TRACE" function is a valuable aid for operating through an entire sequence or method (or parts thereof) for test purposes. Every command line in a sequence can be executed directly by pressing the \(<\text{START}>\) key. Upon completion of the action the next command line is displayed.

Tracing can be executed immediately after entry of a sequence line or at any time after opening the parameter menu and selecting a sequence.
2.4 Commands

2.4.1 Sample Processor commands

The following commands can be programmed to form a sequence. Most of them are also available in manual operation. The following list applies to the programming of run sequences.

SAMPLE

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>>start sequence</td>
<td>Set current sample position</td>
</tr>
<tr>
<td>1 SAMPLE: =</td>
<td>1st parameter: function</td>
</tr>
<tr>
<td>1...999</td>
<td>2nd parameter: value</td>
</tr>
</tbody>
</table>

With the SAMPLE command, you can define which sample (beaker position on the rack) is to be regarded as being the current sample position (SAMPLE = X). This is stored in a run variable and can, for example, be altered in a sample sequence (SAMPLE + X or SAMPLE – X) in order to selectively control a sample series.

Beispiele:

- SAMPLE: = 5: Sets SAMPLE variable to 5, or first sample in the series to rack position 5
- SAMPLE: + 2: Increases SAMPLE variable by 2
- SAMPLE: - 1: Decreases SAMPLE variable by 1

If in a sample sequence the SAMPLE command is not programmed, then each run will automatically increase the SAMPLE variable by 1.

The SAMPLE command does not have to be used for simple applications. Unless anything to the contrary is required, the first sample in a series will automatically be assumed to be in rack position 1. This is why we recommend that special beakers are not placed on the first rack positions, but are set on the highest rack positions.

Under manual operation the <SAMPLE> key can be used before the start of a sample series to define the position of the first sample, provided that this has not already been defined in the method itself.

If a particular arrangement of sample beakers is always to be used for a certain application, then the position of the first beaker can be defined in the start sequence with SAMPLE = X and this setting can be stored in the particular method.

The value of the SAMPLE variable remains at the end of a sample series. It is only reset to 1 when the instrument is switched on, when a RESET command (<RESET> key) is executed or after a RACK command (<RACK> key or in a method run).
2.4 Commands

MOVE

| MOVE | 8 |

>sample sequence

2 MOVE 1 : sample

1,2 sample,

ext.1...ext.4

spec.1...16

prev., next

+swing, -swing

+rotate, -rotate

1...999

+/-1...999

Position beaker / Swing robotic arm

1st parameter: tower

2nd parameter: position

(Tower 2 not possible)

With the MOVE command rack positions are moved to, i.e. the turntable rotates until the sample rack is positioned so that the selected rack position is placed in front of Tower 1 or 2 (if present). If no 786 Swing Head is mounted then only the rack positions of a 1-row rack can be accessed.

With 786 Swing Head

If a 786 Swing Head is mounted then any rack positions can be moved to. The angle of rotation of the rack is then compared with the swing angle of the robotic arm and corrected accordingly.

In addition to a rack position, the robotic arm of a 786 Swing Head can also be swung to any external position. The selectable external positions ext.1 to ext.4 can be defined in the whole swing range from 0° up to the maximum swing angle of the robotic arm. For example, this means that it is possible to move to a titration cell located beside the sample rack.

Beispiele:

- MOVE 1 sample
- MOVE 1 ext.1
- MOVE 1 spec.1
- MOVE 1 5
- MOVE 1 next
- MOVE 1 +2

Moves sample beaker (defined by SAMPLE variable) in front of the tower

Moves robotic arm to external position 1

Moves special beaker 1 in front of the tower

Moves rack position 5 in front of the tower (absolute positioning)

Moves next highest rack position in front of the tower

Depending on the current sample position (SAMPLE variable), moves the next position but one in front of the tower (relative positioning)

Parameters

- **sample** – rack position corresponding to the current value of the SAMPLE variable, see also p. Fehler! Textmarke nicht definiert.

- **ext.1** to 4 – predefined angle positions of the robotic arm. These are defined in the configuration of a tower, see also p. 17.

- **next, prev.** – from the current rack position the next highest (next) or the next lowest (prev.) will be moved to. Special beaker positions will be skipped. If MOVE next is used at the highest rack position then the move will be made to position 1. If MOVE prev. is used at rack position 1 then the highest possible position will be moved to.

- **spec.1** bis 16 – reserved special beaker positions on the sample rack. These are defined in the rack configuration, see also p. 20.
2.4 Commands

+swing, -swing – moves the robotic arm by a certain increment angle. The sign shows the swing direction. The value of the angle is predefined under Parameter >changer settings.

+rotate, -rotate – moves the rack by a certain increment angle. The sign shows the rotation direction. The value of the angle is predefined under Parameter >changer settings.

absolute positioning – the numbered rack position will always be moved to, even when this is a reserved special beaker position.

relative positioning – If a numerical rack position is given with a positive or negative sign then the selected rack position will always be relative to the value of the SAMPLE variable, i.e. to the current sample position.

Remarks

In a method sequence a MOVE command will move the lift (or both lifts) automatically to the shifting position.

After execution of the functions +/-swing or +/-rotate the lift can be moved without restrictions. No defined rack position is required. Thus it is possible to cause damages if the lift is lowered without precautions. These functions must be used with great care.

The direction of rotation is normally selected automatically by the Sample Processor. In the parameter menu under >changer settings the direction and speed of rotation can be defined specifically for particular methods.

LIFT

LIFT: 1: work
LIFT: 1: rinse
LIFT: 1: shift
LIFT: 1: special
LIFT: 1: rest
LIFT: 1: 100 mm

Raises or lowers the lift to a defined position.

Beispiele:

LIFT: 1: work Moves the lift to working position
LIFT: 1: rinse Moves the lift to rinsing position
LIFT: 1: shift Moves the lift to shifting position
LIFT: 1: special Moves the lift to special position
LIFT: 1: rest Moves the lift to uppermost position (0 mm)
LIFT: 1: 100 mm Moves the lift to position 100 mm

Working, rinsing, shifting and special positions are defined specifically for each rack in the configuration menu under >rack definitions (see
p. 20). The rest position is the zero position (0 mm) of the particular lift, i.e. its upper stop.

The lift speed can be set in the parameter menu under `sample changer settings` or altered in a sequence with the appropriate `DEF` command.

Each lift can be positioned with an accuracy of one millimeter. The `LEARN` function is available for this (see p. 70).
2.4.2 Switching components

Pumps and stirrers can be switched as required, either together or separately. They work independently and can be operated at the same time as other functions are being carried out.

PERISTALT

With the PERISTALT command the peristaltic pump can be controlled.

The first parameter switches the peristaltic pump on or off. Alternatively a particular pump duration (in seconds) can be set.

The second parameter sets the pump rate in 15 steps. The signed value (+ or –) also defines the pump direction. If a negative signed pump rate is set, the roller head of the pump drive revolves counterclockwise, otherwise it revolves in clockwise direction.

The LEARN mode is very useful for determining the optimal pump time (see p. 71).

PUMP

With the PUMP command one or both pump connectors (16 V, DC) on the rear side of the tower can be controlled separately. The first parameter selects the connector.

Syntax Of the 1st parameter: tower.pump
1.* affects both pump connectors (tower 2 not possible)

The connectors can be switched on or off individually or be activated for a particular duration.

The LEARN mode is very useful for determining the optimal pump time (see p. 71).
2.4 Commands

STIR

<table>
<thead>
<tr>
<th>Sample sequence</th>
<th>Stirrer control</th>
</tr>
</thead>
</table>
| 5 STIR T1 : 1 s | 1st parameter: stirrer selection
| T1, T2, T*, MSB1...3, MSB*, * | 2nd parameter: status, duration |
| ON, OFF 1…999 s | |

With the **STIR** command up to 4 stirrers can be controlled separately. The first parameter selects the stirrer. With **STIR** * all the stirrers can be switched at the same time.

Selecting a stirrer

T1, T2, T* Stirrer connections as Tower 1 and 2 respectively (stirrer models 802 / 722 / 741), * = both connections on the towers. T2 not possible.

MSB1...3 Stirrer/Dosing device connectors in the chassis of the Sample Processor (stirrer models 801 / 803 / 804), MSB*= all stirrers connected to an MSB socket.

* all stirrers

The stirrers can be switched on or off selectively, or operated for a particular time.

In the parameter menu under **>stirring rates** the speed of each individual stirrer can be defined for a particular method.

2.4.3 Dosing drive control

Connected dosing devices can be controlled separately or all at the same time. Simultaneous addition of the same volumes or simultaneous filling of the connected dosing devices is also possible (Example: **DOS *.* 2 fill** = fill all dosing devices via port 2).

<table>
<thead>
<tr>
<th>Sample sequence</th>
<th>Dosing device control</th>
</tr>
</thead>
</table>
| 6 DOS 1.* : 1 ml | 1st parameter: dosing device and port selection
| *.*, 1.*...3.4 fill, release, prepar, empty, eject, endVol, compen., port, ±0.001…±999.999 ml | 2nd parameter: selects function/enters volume |

The **DOS** command is used for controlling Dosimats and Dosinos. Up to 3 Dosinos or Dosimats can be addressed individually or simultaneously via the **MSB** bus control.

The 1st parameter selects the dosing device and the corresponding dosing port, at which the required function is to be carried out. If * is entered then the default port for the corresponding function will be used (e.g. dosing port = 1, filling port = 2, etc.).
Please note

After dosing the Sample Processor **will not automatically fill** the dosing cylinder. If required, this can be programmed with the command **DOS: 1.* : fill**, see below.

It is possible to enter the volume to be added directly as the 2nd parameter or to carry out specific functions of a Dosino. Negative volumes can also be added, i.e. a certain volume can be aspirated and then ejected again (pipetting). The minus sign is entered with the \textless{}\textasteriskcentered{} key.

The functions listed below are used for complex liquid handling tasks such as pipetting.

Dosing functions:

- **fill**: Fills the Dosimat and Dosino cylinder.
- **release**: Prepares the Dosimat or Dosino for changing the Exchange/Dosing unit. The dosing cylinder is filled via the rinse port. The stopcock is turned to the exchange position (Port 2).
- **prepar.**: Preparation cycle (PREP) for Dosinos. All tubing is rinsed and filled completely.
- **empty**: Tubing system and Dosino cylinder are emptied.
- **eject**: Complete Dosino cylinder contents are ejected.
- **endVol**: Ejects the cylinder content to the max. volume mark.
- **compen.**: Cancels the mechanical play between the dosing piston and spindle.

In the parameter menu under >**Dosing unit def.** the port assignments of the Dosinos as well as the dosing and filling rates can be defined for specific methods.

More details about Dosino commands are given on p. 60ff.

The Sample Processor automatically recognizes whether a Dosimat or a Dosino is connected.
2.4 Commands

2.4.4 Communication commands

The coordination of external instruments or the explicit triggering of functions is possible via both the Remote interface and the serial RS232 interface. The interfaces can be scanned for particular signal patterns or incoming data strings. In return, individual signal lines can be set or any character strings (as control commands) can be transmitted to connected instruments.

<table>
<thead>
<tr>
<th>Scan</th>
<th>>sample sequence</th>
<th>7 SCN:Rm : Ready1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rm,RS</td>
<td>Ready1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wait1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(E.g. by 797 VA Computrace)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wait2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wait*</td>
</tr>
<tr>
<td></td>
<td>Pump1 ?</td>
<td>Wait for Input2 to be set</td>
</tr>
<tr>
<td></td>
<td>Pump2 ?</td>
<td>Wait for Input2 and Input4 to be set</td>
</tr>
<tr>
<td></td>
<td>Pump* ?</td>
<td>Wait until pump 1 is running</td>
</tr>
<tr>
<td>8 Bit</td>
<td>(1,0 or *)</td>
<td>= any 8-bit binary pattern</td>
</tr>
</tbody>
</table>

In a sequence the SCN:Rm command will halt the run sequence until the predefined signal pattern has been received.

Predefined binary patterns are available; these can be selected via simple names (e.g. Ready1 or End2).

Ready describes a statically set Ready line (Output 0) of a connected Metrohm instrument. End stands for a pulsed signal, e.g. EOD (=End of Determination, Output line 3).

Setting special binary patterns allows the flexible monitoring of connected instruments. The following applies:

- 0 = line inactive
- 1 = line active
- * = any line condition

Example: 00000001 = input line 0 is active = Device 1: Ready1

With the LEARN function the binary patterns (=line conditions) can be adopted interactively (see p. 71).
2.4 Commands

Scanning the RS232 interface

In a sequence the **SCN:RS** command will halt the method sequence until the predefined data string (up to 14 characters) has been received via the serial RS232 interface. Incoming data is checked character by character.

Make sure that the transmission parameters of the RS232 interface are identical with those of the connected device (see configuration menu >RS232 settings, p. 23).

Any letters, numbers and special characters can be selected from the character set of the Sample Processor. ‘*’ can be set as wild card for any character string. (If ‘*’ is to be interpreted as an ASCII character then ‘**’ must be used.) A wild card can be set within a character string. When the first part of the character string has been recognized correctly then a search will be made for the first appearance of the character standing after ‘*’. In this case the comparison will be made with the second part of the character string.

Details of the **CTL** command are given below.

With the **LEARN** function transmitted data (=character strings) can be adopted interactively (see p. 71).
The **CTL:Rm** command is used for controlling external devices via the Remote interface. It sets defined line conditions or transmits impulses (200 ms) via the 14 Remote output lines.

Predefined binary patterns are available; these can be selected via simple names (e.g. **PUMP 833 on** or **FILL A 1**).

PROG R/S 1 starts e. g. the time program of a connected IC detector.

Setting special binary patterns allows the flexible monitoring of connected instruments. The following applies:

- 0 = line inactive
- 1 = line active
- * = retain line condition

Example: *******1* = Output line 1 active = start pump 833

Setting the Remote lines

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT</td>
<td>initializes all Remote lines</td>
</tr>
<tr>
<td>INIT 732/819</td>
<td>initializes the Remote lines of 732/819</td>
</tr>
<tr>
<td>PROG R/S 1</td>
<td>starts/stops the time program of 732/819-1</td>
</tr>
<tr>
<td>PROG R/S 2</td>
<td>starts/stops the time program of 732/819-2</td>
</tr>
<tr>
<td>PUMP R/S 1</td>
<td>starts/stops IC Pumpe 818/1</td>
</tr>
<tr>
<td>FILL A 1</td>
<td>switches valve A of 733/820/1 to "Fill"</td>
</tr>
<tr>
<td>INJECT A 1</td>
<td>switches valve A of 733/820/1 to "Inject"</td>
</tr>
<tr>
<td>FILL B/STEP 1</td>
<td>switches valve B of 733/820/1 to "Fill"</td>
</tr>
<tr>
<td>INJECT B 1</td>
<td>switches valve B of 733/820/1 to "Inject"</td>
</tr>
<tr>
<td>ZERO 1</td>
<td>activates autozero of 732/819</td>
</tr>
<tr>
<td>PUMP 833 on</td>
<td>start pump 833</td>
</tr>
<tr>
<td>PUMP 833 off</td>
<td>stops pump 833</td>
</tr>
<tr>
<td>STEP MSM 833</td>
<td>advances suppressor module 833</td>
</tr>
<tr>
<td>14 Bit (1, 0 or *)</td>
<td>= any binary pattern with 14 bit</td>
</tr>
<tr>
<td>******1</td>
<td>start/advance device1 (e. g. 797 VA Computrace)</td>
</tr>
</tbody>
</table>
2.4 Commands

Data transmission via serial interface

- **CTRL**>sample sequence
 - **10** CTL:RS
 - default value: M;$G = starts Metrohm instrument in current mode
 - 14 ASCII characters = any character string with 14 characters

Data (character strings) can be transmitted to connected devices via the serial RS232 interface.

Make sure that the transmission parameters of the RS232 interface are identical with those of the connected device (see configuration menu >RS232 settings, p.23).

Any letters, numbers and special characters can be selected from the character set of the Advanced Sample Processor.

This function is primarily suitable for instruments that understand the Metrohm Remote language. These can be controlled with so-called triggers.

The most important of these are:

- **&M;$G** Go, starts instrument in current mode
- **&M;$S** Stop, stops device
- **&M;$H** Hold, interrupts determination
- **&M;$C** Continue, restarts determination

Switching on the **AutoInfo** status messages (e.g. in a start sequence) can be carried out with the following Remote commands:

- **&Se.A.T.R"ON"** Status message at "Ready" condition
- **&Se.A.T.F"ON"** Status message at end of a determination
- **&Se.A.T.S"ON"** Status message at manual Stop
- **&Se.A.T.G"ON"** Status message at start of a method
- **&Se.A.T.E"ON"** Status message at error condition

Logically the corresponding **AutoInfo** messages should be switched off again in a final sequence (..."OFF").

Detailed information about the syntax of the Remote language can be found in the Instructions for Use of your Metrohm instrument.

For communication with instruments from other manufacturers or a computer please conform with their syntax and conventions.
2.4 Commands

2.4.5 Auxiliary commands

WAIT

<table>
<thead>
<tr>
<th>>sample sequence</th>
<th>Waiting time</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 WAIT: pause 1 s</td>
<td></td>
</tr>
<tr>
<td>pause, runtime 0...1...9999 s</td>
<td></td>
</tr>
</tbody>
</table>

The WAIT command is used for setting a particular waiting time or for waiting until a particular time (run time) in a run sequence.

If pause is selected then the method run will be interrupted for the entered duration (in seconds).

If runtime is selected then the method run will be interrupted until the selected running time (seconds counter) has been reached. The running time (in seconds) always starts at the beginning of an individual sequence, i.e. start sequence, sample sequence or final sequence. If the running time of the sequence has already been reached or exceed when the WAIT command is executed then the method will be continued immediately.

RACK

<table>
<thead>
<tr>
<th>>Sample sequence</th>
<th>Initialize rack</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 RACK</td>
<td></td>
</tr>
</tbody>
</table>

The rack turns to the starting position, i.e. the lift (or both lifts) move upward to the rest position and the rack is rotated to the initial position. The rack code is read off and the SAMPLE variable (position of the current sample) reset to 1. The RACK command should only be used in a final sequence.
2.5 Managing methods

2.5.1 User-defined methods

Main menu:

<table>
<thead>
<tr>
<th>methods</th>
<th>>recall method</th>
<th>Open submenu with <ENTER></th>
</tr>
</thead>
<tbody>
<tr>
<td>methods</td>
<td>>store method</td>
<td>Use <↑> or <↓> up or down by one menu item</td>
</tr>
<tr>
<td>methods</td>
<td>>delete method</td>
<td>Use <HOME> or <END> to reach the first and last menu items</td>
</tr>
</tbody>
</table>

Use <QUIT> to return to normal operating condition.

Dialog for loading methods

Open the dialog with <ENTER>

>recall method
name: ********
Select method

8 ASCII characters

All the stored methods can be selected with <SELECT>. If an "empty" method is to be loaded then the method ******** can be selected with <CLEAR>. This deletes the current working memory for methods.

Dialog for saving methods

Open the dialog with <ENTER>

>store method
name: ********
Define method name

8 ASCII characters

The text input mode is activated with ‘<’ or ‘>’ in order to be able to enter your chosen method name (see p. 14).

Dialog for deleting methods

Open the dialog with <ENTER>

>delete method
name: ********
Select method

8 ASCII characters

>delete method
delete ******** ?
Confirm with <ENTER>
Cancel with <QUIT>
2.5.2 POWERUP method

When the Sample Processor is switched on the sample rack and the lifts move to their initial positions. This means that electrodes may also be removed from the conditioning beaker. In order to re-immers them in the conditioning beaker you can use the POWERUP method. This method is automatically started when the Sample Processor is switched on and the initialization of the instrument is finished.

Create a method which contains a command sequence that is to be processed when the Sample Processor is switched on. Save this method under the name POWERUP (see p. 46).
2.6 Run control

With <START> you can start a method from the normal operating condition. If no manual intervention is made, or if no unexpected error occurs, the sample series will be processed correctly and terminated with the final sequence. The sample sequence will be repeated several times in accordance with the entry made under <PARAM>, number of samples, starting with the sample beaker defined as SAMPLE.

If External START (see configuration 2.2.1) is switched on then the activation of the Remote line Input 7 will also start the method.

If the sample series is halted with <STOP> then the Sample Processor will return directly to the normal operating condition. Unprocessed samples will not be taken into account and the final sequence will not be carried out. If under Manual stop settings have been defined for this case, then the corresponding actions or commands will be carried out, e.g. connected devices will be stopped.

If external START (see configuration 2.2.1) is switched on then the activation of Remote line Input 6 will also stop the method.

With <HOLD> the method run can be interrupted. The currently active command will be terminated immediately. With <START> the method can be continued with the following command in the active sequence. The connected peripheral devices will not be interrupted with the <HOLD> key.

<QUIT> breaks off the command which is currently being executed and starts the next command line in the sequence.

If a fault occurs during a sample series an appropriate error message will be shown; this must be confirmed with <QUIT>. The Sample Processor then returns to the HOLD status (see above). After the fault has been remedied the run can be continued with <START> or, if necessary, cancelled with <STOP>.

<CLEAR> interrupts a sample series after the currently active sequence has been carried out (gentle stop). The current sample will be processed to the end.
2.7 Manual operation

2.7.1 Turning the sample rack / Positioning the samples

With the \(<\leftarrow/NEXT>\) and \(<\rightarrow/PREV>\) keys the sample rack can be rotated forward or backward by one position. \(<\leftarrow/NEXT>\) moves the next sample position (SAMPLE+1) to the tower. \(<\rightarrow/PREV>\) moves the previous sample position (SAMPLE-1) to the tower.

With the MOVE command rack positions are moved to, i.e. the turntable rotates until the sample rack is positioned so that the selected rack position is placed under the needle. With \(<SELECT>\) the numerical rack position as well as the predefined current sample (SAMPLE command) or the special beakers 1-16 can be chosen. Furthermore, with the robotic arm external position (not on the rack) can be accessed. More details about the MOVE command you can find in section 2.4.1.

For security reasons turning the sample rack is only possible when the lift is in or above the shift position. The lift is automatically raised, if its current position is lower than the predefined shift position.

2.7.2 Moving the lift

The keys \(<\uparrow>\) and \(<\downarrow>\) allow upward and downward movement of the lift. The lowest possible lift position is defined by the configuration parameter ‘max. stroke path’.

The \(<\text{HOME}>\) key runs the lift to the rest position (0 mm), i.e. to the upper limit.

\(<\text{END}>\) runs the lift to the predefined work position (see section 2.2.3).
2.7 Manual operation

Position the lift

With the LIFT command, the lift can be run to a given position. In addition to selecting an exact position in mm (0 – 125 mm) the <SELECT> key can select a predefined position (work position, rinse position, shift position, special position, rest position = 0 mm). The lowest possible lift position can be set in the configuration menu, see section 2.2.2.

2.7.3 Setting the sample position

The <SAMPLE> command serves to set the current sample position. It defines the first sample tube for the subsequent sample series.

2.7.4 Pump control

The PUMP command is used to switch on/off the peristaltic pump at the 838 Advanced Sample Processor. The PERISTALT command switches on or off the peristaltic pump, according to the current state. Pump rate and rotation direction of the pump drive can be set in 15 steps. A negative value of the pump rate defines a counterclockwise rotation. A positive value of the pump rate defines a clockwise rotation.

2.7.5 Switching the stirrers

The STIR command is used to switch on/off the stirrers at the 838 Advanced Sample Processor. The STIR command switches on or off the stirrers, according to the current state. Stirrer speed can be set in 9999 steps. A negative value of the stirrer speed defines a counter-clockwise rotation. A positive value of the stirrer speed defines a clockwise rotation.
With the STIR command all of the connected stirrers can be controlled. The first parameter selects the stirrer. In addition to switching on and off, the stirring time can be chosen (in seconds).

2.7.6 Dosing device control

![DOS 6](image)

manual operation

DOS: 1.* : : 1 mL

1.1…3.4,
1.*…3.*, *.*

fill, release, prep
empty, eject, endVol,
compen., port,

Dosing functions

The DOS command is used for controlling Dosimats and Dosinos. The 1st parameter selects the dosing device and the corresponding dosing port, at which the required function is to be carried out. In addition to the dosing volume, several dosing functions can be chosen. For details, see section 2.4.3.

2.7.7 Display interface signals

![SCAN](image)

manual operation

SCN:Rm :00000000
Rm,RS 0,1

Display remote interface signals

The SCN:Rm command causes the signal states of the incoming remote lines to be displayed in binary format (1 = line active, 0 = line inactive).

manual operation

SCN:RS
Rm,RS ASCII characters

Display RS232 interface signals

The SCN:RS command causes the character string received at the RS232 interface to be displayed line by line (14 characters).
Interface control

Setting the remote lines

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rm,RS INIT</td>
<td>Initializes all Remote lines</td>
</tr>
<tr>
<td>INIT 732/819</td>
<td>Initializes the Remote lines of 732/819</td>
</tr>
<tr>
<td>PROG R/S 1</td>
<td>Starts/stops the time program of 732/819-1</td>
</tr>
<tr>
<td>PROG R/S 2</td>
<td>Starts/stops the time program of 732/819-2</td>
</tr>
<tr>
<td>PUMP R/S 1</td>
<td>Starts/stops IC Pumpe 818/1</td>
</tr>
<tr>
<td>FILL A 1</td>
<td>Switches valve A of 733/820/1 to "Fill"</td>
</tr>
<tr>
<td>INJECT A 1</td>
<td>Switches valve A of 733/820/1 to "Inject"</td>
</tr>
<tr>
<td>FILL B/STEP 1</td>
<td>Switches valve B of 733/820/1 to "Fill"</td>
</tr>
<tr>
<td>INJECT B 1</td>
<td>Switches valve B of 733/820/1 to "Inject"</td>
</tr>
<tr>
<td>ZERO 1</td>
<td>Activates autozero of 732/819</td>
</tr>
<tr>
<td>PUMP 833 on</td>
<td>Start pump 833</td>
</tr>
<tr>
<td>PUMP 833 off</td>
<td>Stops pump 833</td>
</tr>
<tr>
<td>STEP MSM 833</td>
<td>Advances suppressor module 833</td>
</tr>
<tr>
<td>14 Bit (*)</td>
<td>Any binary pattern with 14 bit</td>
</tr>
<tr>
<td>*************1</td>
<td>Start/advance device 1 (e.g. 797 VA Computrace)</td>
</tr>
</tbody>
</table>

The **CTL: Rm** command controls external instruments via the remote interface. It causes the setting of defined line states or the sending of pulses via the 14 remote output lines. Predefined bit patterns are supported which can be selected by short names (e.g. 'INIT 732/819' or 'ZERO 1').

Here the following is valid:

- 0 = line inactive
- 1 = line active
- * = do not change line state

Example:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*************1</td>
<td>Output line 0 active</td>
</tr>
<tr>
<td></td>
<td>= advances 797 VA Computrace</td>
</tr>
</tbody>
</table>

For details about the remote interface, see section 3.2.

Data communication via RS232 interface

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rm,RS Clear value: &D.$9"</td>
<td>Start/stop time program at 732</td>
</tr>
<tr>
<td>14 ASCII characters</td>
<td>Arbitrary string of 14 characters</td>
</tr>
</tbody>
</table>

Using the **CTL: RS** command data (= character string) can be sent to instruments connected via the serial RS232 interface.

For details about the remote interface, see section 2.4.4 and section 3.2.4.
2.7.9 **External pump control**

![External pump control](image)

Switching the pump connectors

The pump connectors at the rear side of the tower can be switched with the `<EXT>` key. Just enter the number of the connector to switch its state (on/off).

The state of the pump connector is displayed in the normal state of the instrument:

```
******** counter  1/112
PUMP-+  STIR----- ready
```

The + sign stands for an activated pump connector 2.

2.7.10 **Switching the injection valve**

![Injection valve](image)

Switching the injection valve

The injection valve on the tower of the 838 Advanced Sample Processors has two positions. With the `<VALVE>` and the `<ENTER>` key the position is switched directly.

2.7.11 **Rack initialization**

![Rack initialization](image)

Initialize the sample rack

The `<RACK>` key immediately rotates the rack to initial position. The magnetic rack code is read off and the corresponding rack table is loaded. This should be done after every rack change.
2.8 Dosing and liquid handling

2.8.1 Dosimats and Dosinos

Three 685/805 Dosimats or 700/800 Dosinos can be used as dosing instruments connected directly to an MSB socket. They can be controlled with the DOS command.

Each Dosimat or Dosino can be equipped with various exchange units or Dosing units. Before these units are exchanged the buret stopcock must always be moved to the exchange position, as otherwise when the buret is removed there is the risk of serious damage to the buret itself or to the Dosimat or Dosino drive unit.

Before removing the Dosing unit or exchange unit always trigger the 'DOS: X.Y : release command!

With Dosimats and Dosinos any volumes of auxiliary solutions up to 999 mL can be added. With both types of instrument the filling function can be selectively triggered (DOS: X.Y : fill). When switched on the dosing or exchange unit will always be filled via Port 2 (filling port).

The Sample Processor automatically recognizes the type of dosing instrument connected to it.

Further commands are available for the 700/800 Dosinos, so that the wide range of possibilities which characterize these Dosing units can be used to the full extent.

Fig. 6 Dosino 800 with Dosing units
The Dosing unit has four ports (inlets/outlets) to which various functions can be assigned. There is an additional outlet (VENT or 0) that is used for venting the bottle on which the Dosing unit is mounted.

Fig. 7 Dosing unit from below

- **VENT/0**: is used for venting the storage bottle and is normally fitted with an absorber tube (filled with a drying agent).
- **Port 1**: is side-mounted and is defined as dosing outlet 1 as standard.
- **Port 2**: is located on the base and is defined as the filling inlet as standard; it is normally fitted with a standpipe.
- **Port 3**: is side-mounted and is defined as dosing outlet 2 as standard.
- **Port 4**: is located on the base and is defined as the air inlet opening for emptying the tubing system as standard.

The maximum dosing and filling rates, which can be entered for each port of the Dosing unit in the configuration menu under **Dosing units**, depend on the cylinder size:

<table>
<thead>
<tr>
<th>Cylinder volume</th>
<th>Max. dosing rate</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mL</td>
<td>6.6 mL/min</td>
<td>0.2 µL</td>
</tr>
<tr>
<td>5 mL</td>
<td>16.6 mL/min</td>
<td>0.5 µL</td>
</tr>
<tr>
<td>10 mL</td>
<td>33.3 mL/min</td>
<td>1.0 µL</td>
</tr>
<tr>
<td>20 mL</td>
<td>66.6 mL/min</td>
<td>2.0 µL</td>
</tr>
<tr>
<td>50 mL</td>
<td>160 mL/min</td>
<td>5.0 µL</td>
</tr>
</tbody>
</table>
2.8 Dosing and liquid handling

Dosing command

The following functions can be executed with Dosinos. For each command the dosing drive and the Dosing unit port at which the command is to be executed can be entered. The addition of a particular (positive) volume and filling the cylinder are also possible with 685 and 805 Dosimats.

If * is entered as wild card for the drive then the selected function will be carried out by all the connected dosing devices.

If * is entered as wild card for the port then the particular function will be carried out at the port defined as standard in the parameter menu under >def. Dosing units. This means that this setting is method-specific, but also applies to manual operation depending on the loaded method.

Dosing

DOS: X.Y : xxx.xx mL

Adds a particular volume

The given volume will be ejected though the selected port. If a value with a negative sign is entered then the volume will be aspirated.

The Dosing unit will not be refilled after each addition. The standard dosing port (Port *) is that defined under

>dosing drive X
dosing port Y

(default: Port 1).

Filling

DOS: X.Y : fill mL

Fills the cylinder

The Dosing unit is filled completely. The liquid is aspirated via the given port. The standard filling port (Port *) is that defined under

>dosing drive X
filling port Y

(default: Port 2).

Prepare

DOS: X.Y : prepar. mL

Prepares = rinses and fills the connected tubing and the dosing cylinder

The tubing system of the Dosino should be freed from air bubbles at least once per day by carrying out a preparation cycle. This is a process that could take some time.

It is recommended to use this command in a start sequence.

During the preparation process the dosing cylinder as well as the connected tubing are completely filled. Several filling and dosing processes are carried out. The volumes required for this are calculated from the configuration settings of the Dosing unit, i.e. from the tubing lengths and diameters (see Section 2.2.4).
The contents of the dosing cylinder is ejected via the selected port. The standard PREP port (Port *) is that defined under

```
> dosing drive X
preparation port Y
```

(default: Port 1).

Empty

```
DOS: X.Y : empty mL
```

Completely empties the dosing cylinder and tubing.

The tubing system and Dosing unit cylinder can be completely emptied. The liquid in the dosing cylinder is ejected via the dosing port. The air required to displace the liquid from the tubing is aspirated via the given port. The standard port (Port *) for aspirating the air is that defined under

```
> dosing drive X
drain port Y
```

(default: Port 4).

The standard dosing port can be altered under

```
> dosing drive X
dosing port Y
```

(default: Port 1).

Exchange Dosing unit

```
DOS: X.Y : release mL
```

Prepares Dosino for exchanging the Dosing unit.

Before changing the Dosing unit the *release* command must be used to fill the dosing cylinder and move the stopcock to the exchange position. The cylinder is filled by aspirating the necessary volume via the given port. If * is entered as a wild card then the port given under

```
> dosing drive X
rinsing port Y
```

will be used (default: Port 2).
Eject

DOS: X.Y : eject mL
Ejects the complete dosing cylinder contents

The cylinder are completely ejected via the given port. The piston moves down to the stop. If * is entered as a wild card then the port given under

>`dosing drive X
 d_osing port Y`

will be used (default: Port 1).

Endvolume

DOS: X.Y : endVol mL
Ejects the cylinder volume to the max. volume mark

The content of the dosing cylinder is ejected via the given port. The piston is run the nominal volume. If * is entered as a wild card then the port given under

>`dosing drive X
 d_osing port Y`

will be used (default: Port 1).

Compensate

DOS: X.Y : compen. mL
Eliminates the mechanical play

The mechanical play between the dosing piston and drive spindle is eliminated after the stopcock has been rotated to the given port. If * is entered as a wild card then the port given under

>`dosing drive X
 d_osing port Y`

will be used (default: Port 1).
2.8.2 Liquid handling functions

The Sample Processors can use the numerous capabilities of a Metrohm Dosino (700 or 800) to the full extent. The four ports of the Metrohm Dosing units for the Dosino can be used as outlet or inlet ports as defined by the user. This means that not only simple addition and filling tasks can be carried out, but complex liquid handling tasks such as pipetting or sample transfer can be carried out without any problems.

The dosing functions of the Metrohm Sample Processors are to be used in such a way that, in addition to the function, the port at which the function is to be carried out is also given. This means the Dosing unit inlet or outlet to which the stopcock first moves in order that the required function is carried out.

Fig. 8 Dosing unit - ports
2.8.3 The DOS command

The liquid handling command DOS has two parameters:

<table>
<thead>
<tr>
<th>General:</th>
<th>DOS:</th>
<th>Address</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>DOS:</td>
<td>1.1</td>
<td>5 mL</td>
</tr>
<tr>
<td>Parameter:</td>
<td>drive.port</td>
<td>Volume or function (negative volume permitted)</td>
<td></td>
</tr>
</tbody>
</table>

- for drive: * = all dosing drives
- for port: * = default port for particular function

Example:

```
DOS: *.* fill mL
```

means:

On all the connected dosing devices the cylinder is filled via the default port.

Default ports:

The default ports are the ports assigned in the parameter menu under >Dosing unit def., see also Section 2.2.4.

2.8.4 Pictograms

For complex liquid handling tasks only Dosinos (700 or 800 models) can be used as dosing drive. In order to clarify the various functions and processes the following pictograms are used on the next few pages.

The following arrangement applies:

- **Function:**
 - The arrow represents the direction of motion of the piston in the dosing cylinder.
 - The stopcock position is shown beneath the cylinder wherever necessary.

- **Port:**
 - Default: Dosing port 1
 - Default: Filling port
 - Default: Dosing port 2
 - Default: Drain port

The pictograms above show the default settings.
2.8.5 Liquid handling functions in detail

Dosing

Example:

DOS: 1.1 : 1.000 mL
Default port = 1

'Normal' dosing can be carried out by entering a volume. Automatic cylinder filling is triggered neither before nor after the dosing process. If the dosing piston reaches 'max. Volume' mark (10'000 impulses) during the dosing process then the cylinder will be refilled.

Dosing a negative volume

Example:

DOS: 1.2 : -1.000 mL
Default port = 1

If a negative value is set for a volume then the dosing process will take part in the opposite direction, i.e. a liquid will be aspirated through the given port. Automatic cylinder filling is triggered neither before nor after the dosing process. If the dosing piston reaches the zero mark during the dosing process then the cylinder will be refilled. Do not select any volume that is larger than the nominal cylinder volume. Aspiration should take place with a single piston stroke. This function can be used for pipetting.

Filling

Example:

DOS: 1.3 : fill mL
Default port = 2

Filling the cylinder can be carried out from a freely selectable port. After the filling process the stopcock remains at the selected port.
2.8 Dosing and liquid handling

Exchanging Dosing unit

Example:

DOS: 1.2 : release mL
Default port = 2

This command can be used before exchanging a Dosing unit to fill the cylinder via the given port. In this way, for example, air can be aspirated via Port 4. After the cylinder has been filled the stopcock will move to Port 2. The dosing drive can then be removed from the Dosing unit.

Preparing the Dosing unit

Example:

DOS: 1.* : prepar. mL
Default port = 1

In order to prepare a Dosing unit for use a complex procedure is started: first the cylinder contents are ejected via the given port, then the volume of the filling tubing is drawn in and ejected again via the given port. All the connected pieces of tubing are then filled bubble-free (tubing length > 0 mm) and finally the cylinder is filled again. The volumes of the connected pieces of tubing (calculated from length and diameter) are taken into account during the whole procedure.

Automatic emptying

Example:

DOS: 1.4 : empty mL
Default port = 1

Automatically emptying the Dosing unit takes place according to a complex procedure: first the cylinder contents are ejected via the given port, the ejection tubing is then briefly rinsed with reagent from the filling tubing and then all the pieces of tubing are emptied in sequence. Air is always aspirated via the drain port (default: Port 4) for emptying. The volumes of the connected pieces of tubing (calculated from length and diameter) are taken into account during the whole procedure.
2.8 Dosing and liquid handling

Ejecting

Example:

DOS: 1.1 : eject mL
Default port = 1

The whole cylinder contents are ejected via the given port. The piston is lowered beyond the max. volume mark to the stop. This command should be used for removing air bubbles.

Run piston to end volume

Example:

DOS: 1.1 : endVol mL
Default port = 1

The cylinder content is ejected via the given port. The piston is run to the max. volume mark. This command should be used for the pipetting functions.

Compensating the mechanical play

Example:

DOS: 1.4 : compen. mL
Default port = 1

As the Dosing units are exchangeable, the coupling of the Dosino connecting rod (spindle) has a slight degree of mechanical tolerance which is noticeable when the direction of the piston movement changes. This tolerance can be compensated. This is done by first making a short piston movement in the same direction as the previous piston movement, followed by an equivalent piston movement in the opposite direction.

Stopcock rotation

Example:

DOS: 1.3 : port mL
Default port = 1

The stopcock rotates to the given port. No piston movement takes place. The direction of rotation is determined by the parameter **stopcock direction** under >Dosing unit def. in the parameter menu.
3 Appendix

3.1 Sample racks

A sample rack is a turntable that accommodates sample vessels and is placed on the Sample Processor. In order to be able to process different shapes and sizes of sample vessels various types of sample rack can be used and easily exchanged. The number of samples that a rack can accommodate depends on the diameter of the sample beakers.

- With the 838 Advanced Sample Processor all of the Metrohm-sample racks with 42 cm diameter can be used. These are also usable with the Sample Processor models 778 and 814.

3.1.1 Metrohm standard sample racks

<table>
<thead>
<tr>
<th>Article no. / Rack type</th>
<th>No. of samples</th>
<th>Type of sample vessel</th>
<th>Vessel diameter</th>
<th>Magnet code (predefined)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2041.310</td>
<td>12</td>
<td>250 mL Metrohm titration beaker</td>
<td>65 mm</td>
<td>000001</td>
</tr>
<tr>
<td>6.2041.320</td>
<td>16</td>
<td>150 mL beaker</td>
<td>55 mm</td>
<td>000010</td>
</tr>
<tr>
<td>6.2041.340</td>
<td>24</td>
<td>75 mL Metrohm titration beaker</td>
<td>35 mm</td>
<td>001000</td>
</tr>
<tr>
<td>6.2041.350</td>
<td>48 *)</td>
<td>75 mL Metrohm titration beaker</td>
<td>35 mm</td>
<td>010000</td>
</tr>
<tr>
<td>6.2041.360</td>
<td>12</td>
<td>150 mL beaker or 200 mL disposable beaker</td>
<td>55 mm</td>
<td>100000</td>
</tr>
<tr>
<td>6.2041.370</td>
<td>14</td>
<td>200 mL disposable beaker</td>
<td>55 mm</td>
<td>000011</td>
</tr>
<tr>
<td>6.2041.380</td>
<td>14</td>
<td>8 oz disposable beaker</td>
<td>59 mm</td>
<td>001011</td>
</tr>
<tr>
<td>6.2041.400 *</td>
<td>126+2 *)</td>
<td>11 mL sample tube 250 mL Metrohm titration beaker</td>
<td>16 mm 65 mm</td>
<td>001010</td>
</tr>
<tr>
<td>6.2041.410 *</td>
<td>141+1 *)</td>
<td>11 mL sample tube 500 mL beaker</td>
<td>16 mm 71 mm</td>
<td>001010</td>
</tr>
<tr>
<td>6.2041.430 *</td>
<td>127+2 *)</td>
<td>11 mL sample tube 2x 300 mL beaker</td>
<td>16 mm 68 mm</td>
<td>010001</td>
</tr>
<tr>
<td>6.2041.440 *</td>
<td>148+3 *)</td>
<td>11 mL sample tube 3x 300 mL beaker</td>
<td>16 mm 68 mm</td>
<td>010100</td>
</tr>
<tr>
<td>6.2041.450**</td>
<td>56 + 56</td>
<td>50 mL PP sample beakers 11 mL sample tube</td>
<td>30 mm 16 mm</td>
<td>100100</td>
</tr>
<tr>
<td>6.2041.750 *</td>
<td>36</td>
<td>11 mL sample tube</td>
<td>16 mm</td>
<td>011000</td>
</tr>
</tbody>
</table>

* recommended for IC applications
** recommended for VA applications

On request we can supply further user-defined racks that can be defined in the instrument via PC software. The beaker positions can be arranged as required.
3.1 Sample racks

3.1.2 Magnet codes

Each individual sample rack can be identified unambiguously by a magnet code. Magnet pins attached to the base of the rack can be arranged to form a 6-place binary code. The Sample Processor can then automatically recognize which rack has been placed on it if the rack is located at the starting position after initialization.

When a rack is changed it should first be brought to the starting position by pressing the <RACK> key. In this way the rack can be positively recognized, which makes correct beaker positioning possible. Each type of rack is assigned to an internal position table, in which the angle of rotation and distance to the center of the rack is defined for each rack position.

When a sample series is started the Sample Processor automatically moves the rack to the starting position so that its magnet code can be read off. This ensures that the beaker positions coincide with the internal position table of the current rack.

The standard racks supplied by Metrohm are already provided with a predefined magnet code for each type of rack. If several racks of the same type are in use then the magnet pins can be arranged differently to allow the unambiguous identification of each individual rack.

Magnet code format (examples):

- 000001 i.e. only one magnet inserted, Bit 0
- 000101 i.e. two magnets inserted, Bit 0 and 2

63 different combinations are possible. Code 000000 stands for "no defined code".

3.1.3 Rack data

In many applications the method and beaker sizes must be observed exactly. As sample racks are intended for particular beaker sizes, the rack definitions also contain, in addition to the rack positions themselves, data about the lift positions that are directly associated with the particular beaker size.

The following data can be defined for each rack:

<table>
<thead>
<tr>
<th>Rack name</th>
<th>Unambiguous identification, ordering number is standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Magnet code for automatic rack recognition</td>
</tr>
<tr>
<td>Work position</td>
<td>Working height for Lift 1 and 2*</td>
</tr>
<tr>
<td>Rinse position</td>
<td>Rinsing height for Lift 1 and 2*</td>
</tr>
<tr>
<td>Shift position</td>
<td>Shifting height for Lift 1 and 2*</td>
</tr>
<tr>
<td>Special position</td>
<td>Additional height for Lift 1 and 2*</td>
</tr>
<tr>
<td>Beaker radius</td>
<td>Radius of sample beaker</td>
</tr>
<tr>
<td>Beaker sensor</td>
<td>Beaker checking mode</td>
</tr>
</tbody>
</table>
3.1 Sample racks

Special beaker positions

The **rack name** is used for the unambiguous identification of a rack. The standard name stored for the rack is the ordering number. In a method, this can be assigned to a particular rack name (see Section 2.3.1). The automatic rack recognition ensures that if an incorrect rack is used this will be recognized and the user will be informed of this.

The **code** is used for automatic rack recognition. You must make sure that this 6-place binary code coincides with the actual magnet code set on the rack. Rack codes can be altered as required. However, they must always be assigned to a single rack only. Avoid the use of the predefined codes for the standard racks supplied by Metrohm, see also p. 64.

The **working position** is used for defining the lift position at which a sample is to be processed. This means that the ideal setting for a particular sample rack can be defined depending on the height of the sample beakers. In manual operation this working position can be moved to directly with the <END> key. In a run sequence this can be programmed with \texttt{LIFT :1 : work mm}.

The **rinsing position** is used for defining the lift position at which, for example, the electrode is to be rinsed. This means that the ideal setting for a particular sample rack can be defined depending on the height of the sample beakers. In a run sequence this can be programmed with \texttt{LIFT: 1: rinse mm}.

The **shifting position** is used for defining the lift position at which the rack can be rotated. If the lift is located below the shift position then it will be moved automatically to the shifting height before the rack is rotated. This safety feature prevents the electrode from being damaged by rotational movements of the rack to a large extent. However, a prerequisite is that this shifting height is set correctly. In a run sequence the movement of the lift to the shift position can be programmed with \texttt{LIFT: 1 : shift mm}.

The **special position** is a further user-defined lift position. For example, when pipetting with a robotic arm it can be selected so that the pipet tip is located directly above the sample solution so that a separating bubble (air gap) is formed. In a run sequence this can be programmed with \texttt{LIFT: 1 : special mm}.

The **beaker radius** can be used to prevent a titration head from trying to enter a beaker which is too narrow for it, which could damage the electrode or sample beaker. By entering the beaker radius a Sample Processor can decide whether a titration or transfer head on the lift will “fit” into the particular sample beaker, see also Section 2.2.

A **beaker sensor** is not available for the 838 Advanced Sample Processor at this time.
Special beakers

Special beakers are reserved positions on a sample rack. Up to 16 special beaker positions can be defined per rack. They can be selectively moved to during a run sequence without interrupting the sample series run or interfering with it. Special beakers can be used for rinsing the electrode during a sample sequence or for calibrating an electrode in a start sequence (buffer solutions), etc.

Reserved special beaker positions are automatically recognized in a run sequence and are skipped over when the individual sample beakers themselves are being processed.

Special beakers are moved to with MOVE 1 : spec.1.

The following settings can be made separately for each special beaker position on a rack:

- Rack position
- Working height at Tower 1
- Working height at Tower 2
- Beaker radius
- Beaker sensor

If a special beaker is required in a run sequence, but the Sample Processor cannot find a beaker at the reserved position, then an error message will always appear.
3.2 The Remote interface

Connected peripheral devices can be controlled via the Remote interface (25-pin socket).

Fourteen lines are available for the output of signals (Output 0–13).

Eight lines (Input 0–7) are available for receiving signals (e.g. the 'Ready' signal of a Metrohm device).

Metrohm instruments should only be connected with the Metrohm Remote cables provided.

3.2.1 Output lines

The 14 output lines of the Remote socket can be set as required in both manual operation as well as in a run sequence with the Control command (CTL). This is done by setting a 14-place binary pattern in which each bit is assigned to an output line.

Output 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit 13 12 11 10 9 8 7 6 5 4 3 2 1 0
(bits are always numbered from right to left)

Example: CTL Rm ************1*
sets output line 1 to active (= set), for example, with a connected Titrino this would be a Stop command. 0 resets the output line to inactive.

We recommend that non-relevant output lines are masked with an asterisk (*) in order that the condition of these lines are not altered.

3.2.2 Input lines

The 8 input lines of the Remote socket can be scanned during a method sequence with the SCAN command (SCN). The method sequence will be halted until the given binary pattern coincides with the effective condition of the input lines (e.g. the status of the 'Ready' line for scanning the determination end of a Metrohm device). This is done by setting an 8-place binary pattern, in which each bit is assigned to an input line. When the patterns coincide the run sequence will continue with the next command line. In manual operation the SCAN command is used for displaying the status of all input lines.

Input 7 6 5 4 3 2 1 0
Bit 7 6 5 4 3 2 1 0
(bits are always numbered from right to left)

Example: SCN Rm ********1
is waiting for an active input on line 0 (1 = set).

Input lines that are not of interest or for which no defined condition can be predicted should also be masked with an asterisk (*).

If external START (see configuration 2.2.1) is switched on then Remote lines Input 7 and Input 6 will be reserved for external START and STOP.
In order to simplify the use of Remote commands, particularly when several devices are linked together with Metrohm cables, predefined binary patterns are available as command parameters for the commands **CTL** and **SCN** for standard conditions. These are:

3.2.3 SCN command

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Signal pattern</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready1</td>
<td>******1</td>
<td>waits for "ready" condition of 732/1</td>
</tr>
<tr>
<td>End1</td>
<td>******1</td>
<td>waits for the EOD impulse from 732/1</td>
</tr>
<tr>
<td>End2</td>
<td>1*****</td>
<td>waits for the EOD impulse from 732/2</td>
</tr>
<tr>
<td>Wait1</td>
<td>****1</td>
<td>waits for active Remote line 2 set by 732/1 or 797</td>
</tr>
<tr>
<td>Wait2</td>
<td>****1</td>
<td>waits for active Remote line 4 set by 732/2</td>
</tr>
<tr>
<td>Wait*</td>
<td>****1</td>
<td>waits for active Remote line 2 and 4 set by 732/1 and 732/2</td>
</tr>
<tr>
<td>Pump1 ?</td>
<td>*****1</td>
<td>waits for active IC pump 709/1</td>
</tr>
<tr>
<td>Pump2 ?</td>
<td>1****</td>
<td>waits for active IC pump 709/2</td>
</tr>
<tr>
<td>Pump* ?</td>
<td>11</td>
<td>waits for active IC pumps 709/1 and 709/2 laufen</td>
</tr>
</tbody>
</table>

3.2.4 CTL-Befehl

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Signal pattern</th>
<th>Function</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT</td>
<td>00000000000000</td>
<td>initializes the Remote interface static</td>
<td></td>
</tr>
<tr>
<td>INIT 732/819</td>
<td>0000000</td>
<td>initializes the Remote lines of 732 or 819 static</td>
<td></td>
</tr>
<tr>
<td>PROG R/S 1</td>
<td>000*****1</td>
<td>starts/stops the time program of 819/1 pulse (200 ms)</td>
<td></td>
</tr>
<tr>
<td>PROG R/S 2</td>
<td>***0100</td>
<td>starts/Stopps the time program of 819/2 pulse (200 ms)</td>
<td></td>
</tr>
<tr>
<td>PUMP R/S 1</td>
<td>001*****0</td>
<td>starts/stops IC pump 818/1 pulse (200 ms)</td>
<td></td>
</tr>
<tr>
<td>FILL A 1</td>
<td>010*****0</td>
<td>switches valve A of 820/1 to 'Fill' pulse (200 ms)</td>
<td></td>
</tr>
<tr>
<td>INJECT A 1</td>
<td>100*****0</td>
<td>switches valve A of 820/1 to 'Inject' pulse (200 ms)</td>
<td></td>
</tr>
<tr>
<td>FILL B/STEP 1</td>
<td>001*****1</td>
<td>switches valve B of 820/1 to 'Fill' pulse (200 ms)</td>
<td></td>
</tr>
<tr>
<td>INJECT B 1</td>
<td>110*****0</td>
<td>switches valve B of 820/1 to 'Inject' pulse (200 ms)</td>
<td></td>
</tr>
<tr>
<td>ZERO 1</td>
<td>011*****0</td>
<td>activates autozero of 819/1 pulse (200 ms)</td>
<td></td>
</tr>
<tr>
<td>PUMP 833 ein</td>
<td>*********1</td>
<td>starts the pump of a 833 static</td>
<td></td>
</tr>
<tr>
<td>PUMP 833 aus</td>
<td>*********0</td>
<td>Stopps the pump of a 833 static</td>
<td></td>
</tr>
<tr>
<td>STEP MSM 833</td>
<td>********1</td>
<td>advances a step of the suppressor module 833 pulse (200 ms)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*********1</td>
<td>starts or advances device 1 (e. g. 797 VA Computrace) static</td>
<td></td>
</tr>
</tbody>
</table>
3.3 LEARN mode

The *LEARN* mode is used for three types of application:
- Interactive setting of lift and robotic arm positions
- Rack adjustment
- Interactive parametrizing sequence commands

3.3.1 Setting lift and robotic arm positions

The fine adjustment of defined positions, such as the working height of a lift, can be made by entering the height in mm. But it is recommended to use the *LEARN* function to run a lift or a robotic arm to a certain position by using the arrow keys of the keypad.

Example: procedure for setting the ‘Work height at Tower 1’
- Use manual operation to move to a rack position (at Tower 1).
- Open configuration menu (with the `<CONFIG>` key).
- Open submenu >rack definitions and load the data of the rack which is currently on the turntable.
- Select work position T1.

LEARN mode
The quicker an arrow key is repeatedly pressed, the higher the speed of the lift or the longer the particular movement path.

- Press `<LEARN>` key.
- Use the `<↓>` and `<↑>` keys to move the lift to the required position.
- Accept the lift position with the `<ENTER>` key.
- If necessary modify the position (in mm) by entering numbers.

Example: procedure for setting 'External position 1 at Tower 1’
- Use manual operation to move to a sample beaker (at Tower 1) and move the lift to a suitable lift position.
- Open configuration menu (with the `<CONFIG>` key).
- Select submenus >tower 1 / swing head 1 and external pos.1.

LEARN mode
The quicker an arrow key is repeatedly pressed, the higher the swing rate or the larger the particular swing angle.

- Press `<LEARN>` key.
- Use the `<←>` and `<→>` keys to move the robotic arm until it is in the required position.
- Accept the robotic arm position with `<ENTER>`.
- If necessary modify the position (in °) by entering numbers.
3.3.2 Rack adjustment

If necessary, each sample rack can be finely adjusted, i.e. the rack offset is determined in the direction of rotation. A requirement for this is that the working height has already been set for the particular rack and that the rack settings have been stored.

Procedure:

- Position sample rack on turntable and initialize with <RACK>.
- Open configuration menu (with <CONFIG>) and select submenu >rack definitions.
- Under >>recall rack call up the definitions for the current rack.
- Select rack offset.
- Press <LEARN> and confirm the question adjust RACK ? with <ENTER>.
- The rack rotates to rack position 1.
- Confirm the question adjust tower 1 ? with <ENTER>.
- The lift moves to the working position.
- Use the arrow keys to exactly align rack position 1 with the beaker sensor at Tower 1.
- Confirm the adjustment with <ENTER>.
- The rack offset (in °) is accepted in accordance with the adjustment carried out.

3.3.3 Parametrizing sequence commands

As when editing a method the parameters of a command can most easily be altered interactively, i.e. by altering them manually, particular commands are "adaptive". When editing a sequence the LEARN function allows certain commands to be carried out via manual operation. The resulting parameter (e.g. the lift position or the status of the input lines of the Remote interface) can then be adopted in the current command line. The LEARN function can be used repeatedly. Once times or volumes have been “learned” the values will always be added up. This is extremely useful for the determination of the pumping time, where the optimal duration of the rinsing process can be determined interactively in this way.

Procedure for editing methods:

- Enter command or select existing command line
- Press <LEARN> key
- The function starts, the "LEARN" LED lights up
- Press <LEARN> key
- The function is stopped, the "LEARN" LED blinks
3.4 Disabling keypad functions

Certain user dialog areas can be made inaccessible to untrained users. Various dialog areas or keys can be disabled. For example, this can be used to prevent a method from being overwritten accidentally or parameters from being altered.

The >keyboard options menu for the corresponding settings is opened by keeping the <CONFIG> key pressed down when the Sample Processor is switched on. This menu can still be accessed even if the whole keypad has been disabled.

The individual key functions that can be disabled are:

3.4.1 Disable whole keypad

In routine work, if only a single particular method is used, it may be advisable to prevent manual manipulations on the Sample Processor. For this reason it is possible to disable (almost) all the keypad keys. The <START>, <STOP> and <CLEAR/RESET> keys always remain accessible, so that it is always possible to start and stop methods.

lock keyboard: ON disables all the keypad keys (with the above exceptions).

3.4.2 Disable configuration

The configuration of the Sample Processor can be protected against being overwritten. All the settings in the configuration menu and its sub-menus can then no longer be accessed.

lock <CONFIG>: ON disables the <CONFIG> key.

3.4.3 Disable parameter

If user-defined methods are normally used then it may be advisable to prevent the stored method parameters from being overwritten. The parameter menu and its sub-menus can be made inaccessible.

lock <PARAM>: ON disables the <PARAM> key.

3.4 Disabling keypad functions

- Accept the value with the <ENTER> key (or start the LEARN function again)
- The LEARN LED goes out; the next command line appears

The LEARN function is available for the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Adaptive parameter</th>
<th>Type of function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFT</td>
<td>Lift position in mm absolute</td>
<td></td>
</tr>
<tr>
<td>PUMP</td>
<td>Pumping time in s additive</td>
<td></td>
</tr>
<tr>
<td>STIR</td>
<td>Stirring time in s additive</td>
<td></td>
</tr>
<tr>
<td>WAIT</td>
<td>Waiting time in s additive</td>
<td></td>
</tr>
<tr>
<td>DOS</td>
<td>Dosing volume in mL additive</td>
<td></td>
</tr>
<tr>
<td>SCN Rm</td>
<td>Status of 8 Remote lines "live" value</td>
<td></td>
</tr>
<tr>
<td>SCN RS</td>
<td>Received character string "live" value</td>
<td></td>
</tr>
</tbody>
</table>

3.4 Disabling keypad functions

- Accept the value with the <ENTER> key (or start the LEARN function again)
- The LEARN LED goes out; the next command line appears

The LEARN function is available for the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Adaptive parameter</th>
<th>Type of function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFT</td>
<td>Lift position in mm absolute</td>
<td></td>
</tr>
<tr>
<td>PUMP</td>
<td>Pumping time in s additive</td>
<td></td>
</tr>
<tr>
<td>STIR</td>
<td>Stirring time in s additive</td>
<td></td>
</tr>
<tr>
<td>WAIT</td>
<td>Waiting time in s additive</td>
<td></td>
</tr>
<tr>
<td>DOS</td>
<td>Dosing volume in mL additive</td>
<td></td>
</tr>
<tr>
<td>SCN Rm</td>
<td>Status of 8 Remote lines "live" value</td>
<td></td>
</tr>
<tr>
<td>SCN RS</td>
<td>Received character string "live" value</td>
<td></td>
</tr>
</tbody>
</table>

3.4 Disabling keypad functions

- Accept the value with the <ENTER> key (or start the LEARN function again)
- The LEARN LED goes out; the next command line appears

The LEARN function is available for the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Adaptive parameter</th>
<th>Type of function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFT</td>
<td>Lift position in mm absolute</td>
<td></td>
</tr>
<tr>
<td>PUMP</td>
<td>Pumping time in s additive</td>
<td></td>
</tr>
<tr>
<td>STIR</td>
<td>Stirring time in s additive</td>
<td></td>
</tr>
<tr>
<td>WAIT</td>
<td>Waiting time in s additive</td>
<td></td>
</tr>
<tr>
<td>DOS</td>
<td>Dosing volume in mL additive</td>
<td></td>
</tr>
<tr>
<td>SCN Rm</td>
<td>Status of 8 Remote lines "live" value</td>
<td></td>
</tr>
<tr>
<td>SCN RS</td>
<td>Received character string "live" value</td>
<td></td>
</tr>
</tbody>
</table>

3.4 Disabling keypad functions

- Accept the value with the <ENTER> key (or start the LEARN function again)
- The LEARN LED goes out; the next command line appears

The LEARN function is available for the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Adaptive parameter</th>
<th>Type of function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFT</td>
<td>Lift position in mm absolute</td>
<td></td>
</tr>
<tr>
<td>PUMP</td>
<td>Pumping time in s additive</td>
<td></td>
</tr>
<tr>
<td>STIR</td>
<td>Stirring time in s additive</td>
<td></td>
</tr>
<tr>
<td>WAIT</td>
<td>Waiting time in s additive</td>
<td></td>
</tr>
<tr>
<td>DOS</td>
<td>Dosing volume in mL additive</td>
<td></td>
</tr>
<tr>
<td>SCN Rm</td>
<td>Status of 8 Remote lines "live" value</td>
<td></td>
</tr>
<tr>
<td>SCN RS</td>
<td>Received character string "live" value</td>
<td></td>
</tr>
</tbody>
</table>

3.4 Disabling keypad functions

- Accept the value with the <ENTER> key (or start the LEARN function again)
- The LEARN LED goes out; the next command line appears

The LEARN function is available for the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Adaptive parameter</th>
<th>Type of function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFT</td>
<td>Lift position in mm absolute</td>
<td></td>
</tr>
<tr>
<td>PUMP</td>
<td>Pumping time in s additive</td>
<td></td>
</tr>
<tr>
<td>STIR</td>
<td>Stirring time in s additive</td>
<td></td>
</tr>
<tr>
<td>WAIT</td>
<td>Waiting time in s additive</td>
<td></td>
</tr>
<tr>
<td>DOS</td>
<td>Dosing volume in mL additive</td>
<td></td>
</tr>
<tr>
<td>SCN Rm</td>
<td>Status of 8 Remote lines "live" value</td>
<td></td>
</tr>
<tr>
<td>SCN RS</td>
<td>Received character string "live" value</td>
<td></td>
</tr>
</tbody>
</table>

3.4 Disabling keypad functions

- Accept the value with the <ENTER> key (or start the LEARN function again)
- The LEARN LED goes out; the next command line appears

The LEARN function is available for the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Adaptive parameter</th>
<th>Type of function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFT</td>
<td>Lift position in mm absolute</td>
<td></td>
</tr>
<tr>
<td>PUMP</td>
<td>Pumping time in s additive</td>
<td></td>
</tr>
<tr>
<td>STIR</td>
<td>Stirring time in s additive</td>
<td></td>
</tr>
<tr>
<td>WAIT</td>
<td>Waiting time in s additive</td>
<td></td>
</tr>
<tr>
<td>DOS</td>
<td>Dosing volume in mL additive</td>
<td></td>
</tr>
<tr>
<td>SCN Rm</td>
<td>Status of 8 Remote lines "live" value</td>
<td></td>
</tr>
<tr>
<td>SCN RS</td>
<td>Received character string "live" value</td>
<td></td>
</tr>
</tbody>
</table>
3.4.4 Disable method storage functions

It is extremely advisable to prevent stored methods from being accidentally deleted. It should only be possible to delete methods by deliberately switching off the disabling function.

`>>user methods + <ENTER>` opens the submenu for disabling the method storage functions.

- **lock method recall**: ON prevents the loading of methods.
- **lock method store**: ON prevents methods from being stored.
- **lock method delete**: ON prevents methods from being deleted.

3.4.5 Disable display

If the Sample Processor is only to be operated by using external control software, the display for manual operation can be switched off.

- **lock display**: ON switches off the display.
3.5 786 Swing Head settings

If a 786 Swing Head with robotic arm is to be mounted then its configuration data must be entered in the setup menu of the Sample Processor before. The most important data:

- Swing radius (=length of robotic arm)
- Swing arm offset
- Max. swing angle
- Swing direction

Setup menu of the Sample Processor

Procedure:

- Switch off instrument
- Keep <CONFIG> key pressed down and switch on the instrument again
- In the menu setup >changer setup select the submenu >>swing head 1.
- Make the following settings:

Axis distance

The axis distance is the horizontal distance between the axis of rotation of the rack and the swing axis of the robotic arm.

Default settings:

axial distance 166.00 mm

Swing offset

The swing offset is the physical angle offset of the specific robotic arm model, see the Instructions for Use for the 786 Swing Head.

Default values:

swing offset 8.00°

Max. swing angle

The maximum swing angle is the useable swinging range (relative angle). The starting and finishing positions of this range (as absolute angle positions) are determined by the swing offset (see above) and the Swing Head drive. Because of its construction, each robotic arm model has a different value for the max. swing range, see the Instructions for Use for the 786 Swing Head. This value can also be reduced if necessary.

Default values:

Max. swing angle 117.00°
Swing radius

The swing radius depends on the length of the robotic arm and, together with the axial distance (see above), is the most important parameter for accurately moving to a rack position. The distance from the robotic arm axis to the middle of the processing head at the front of the robotic arm is decisive. The various robotic arm models have different swing radii; see the Instructions for Use for the 786 Swing Head.

Default values:

- **swing radius**: 112 mm

Rotation offset

The rotation offset does not normally need to be altered. It is only used if a Swing Head is to be mounted on the tower with a lateral displacement.

Default value:

- **rot. offset**: 0.00 mm (do not alter)

Swing direction

In principle the swing direction of the robotic arm can be selected as required. If two Swing Heads are mounted on a 2-tower model then you must take care that the two robotic arms do not come into conflict. For this reason the robotic arm at Tower 1 should always be mounted so that it swings to the right and that at Tower 2 to the left.

- Right-swinging mounting means: swing direction –
- Left-swinging mounting means: swing direction +

Default values:

- **Swing direction**: + (at Tower 2, swing to the left)

Adjustment rate

When the RACK command is carried out after switch-on (rack initialization) the robotic arm is automatically adjusted to the zero position. If the highest possible degree of positioning accuracy of the robotic arm is required the rate of the adjustment process can be reduced. However, this also lengthens the duration of the automatic adjustment process, but increases the precision.

Default value:

- **Adjust rate.**: normal

After the settings for the robotic arm have been entered the <QUIT> key must be pressed three times. The settings become active the next time that the instrument is switched on.
3.6 Error messages

If a fault should occur then the execution of the active command will be stopped and an error message shown (display blinks). This must be confirmed with the **<QUIT>** key.

If the Sample Processor is processing a series of samples when the fault occurs then it will switch to the **HOLD** status. When the cause of the fault has been found and remedied the sample series can be re-started with the next command by pressing the **<START>** key. If it is not possible to remedy the fault then the method can be stopped with **<STOP>**.

List of possible error messages and their causes:

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>battery low</td>
<td>The battery for the permanent storage of the user data must be replaced.</td>
</tr>
<tr>
<td>beaker too small</td>
<td>The rack position which has been moved to has a smaller beaker radius than that defined as the min. beaker radius for the particular lift. There is a risk of damage. Check the sample rack, its configuration settings and those of the selected tower.</td>
</tr>
<tr>
<td>changer overload</td>
<td>Load too high, or resistance to the action to be carried out. After <QUIT> the Sample Processor will be initialized again.</td>
</tr>
<tr>
<td>dos.## not exec</td>
<td>A fault has occurred at the given dosing device.</td>
</tr>
<tr>
<td>dos.## not ready</td>
<td>The selected dosing device cannot carry out the particular command as it is carrying out a different action or the current instrument status does not allow it to be carried out.</td>
</tr>
<tr>
<td>dos.unit ## missing</td>
<td>The selected dosing device has not been connected.</td>
</tr>
<tr>
<td>dos.unit ## overload</td>
<td>The selected Dosing unit cannot carry out a dosing command. Check the buret and piston.</td>
</tr>
<tr>
<td>invalid position</td>
<td>The selected sample position does not exist or is defined as a special beaker or the selected special beaker has not been defined. The selected lift position may lie outside the max. stroke path.</td>
</tr>
<tr>
<td>invalid rack code</td>
<td>The rack code read in by the Sample Processor cannot be found in the internal table.</td>
</tr>
<tr>
<td>rack data missing</td>
<td>No sample rack in position, or no rack data can be found for the sample rack currently on the turntable.</td>
</tr>
<tr>
<td>RS232 error</td>
<td>The transmission parameters of the RS232 interface do not coincide with those of the receiving device.</td>
</tr>
</tbody>
</table>
3.6 Error messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCAN timeout</td>
<td>The connected device has not transmitted the expected signal within the defined timeout time. The sample determination may not have been carried out properly, or the connection has been interrupted. Check the connected device.</td>
</tr>
<tr>
<td>service recommended</td>
<td>The warning limit of the running time meter has been reached. It is time for the Sample Processor to be serviced. Please contact your local Metrohm service department.</td>
</tr>
<tr>
<td>user memory full</td>
<td>The memory for the user-defined methods is full. Before new methods can be stored methods that are not used, or only used infrequently, must be deleted.</td>
</tr>
<tr>
<td>wrong rack</td>
<td>The rack placed on the turntable is not the rack assigned to the method under parameters.</td>
</tr>
<tr>
<td>trap error xxx</td>
<td>Unexpected program error; switch instrument off and then on again.</td>
</tr>
<tr>
<td>No display, LEDs Tower 1 and Tower 2 light up</td>
<td>LCD error (system error 7). Contact Service.</td>
</tr>
</tbody>
</table>
3.7 Initializing the working memory

With this diagnostic step the default values for instrument parameters can be entered via the keypad and the instrument returned to its original condition. This measure is important with respect to the following points:

In rare cases it could happen that massive interference signals such as current peaks, lightning, etc. could affect the contents of the data memory. If the data memory contents are undefined then this could lead to a system crash.

The Sample Processor has different ways of initializing the working memory. Either the complete data memory (all) or only parts of it (param, config, setup, assembly) can be overwritten with the default values.

Although the instrument number is retained, initialization should only be carried out when absolutely necessary, as this deletes the stored user data (etc.).

- Keep key <9> pressed down when the instrument is switched on.

 diagnosis

 > RAM initialization

- Press the <ENTER> key to open the following diagnosis menu:

 > RAM initialization
 select: param
 > RAM initialization
 select: config
 > RAM initialization
 select: setup
 > RAM initialization
 select: assembly
 > RAM initialization
 select: all

 Set method parameters with default values.
 Set instrument configuration with default values.
 Set setup parameters with default values.
 Set assembly parameters with default values.
 Delete all user-defined methods

The table shows which parts of the working memory are affected by the corresponding initialization versions. If a system crash occurs (undefined display, no reaction to pressing keys, etc.) we recommend the initialization version "all".
• If necessary, press the <SELECT> key several times until this appears:

>RAM initialization
 select: all

• Press <ENTER>.

>diagnosis
>RAM test

• Press <ENTER>.
• Press <QUIT>.

The instrument finishes the diagnosis process and carries out a start-up reset.
3.8 Standard methods

The following pages contain a list of the user methods supplied together with explanations of important commands. They are used, if the 838 Advanced Sample Processor is not being controlled directly by a PC software.

These standard methods are therefore mostly used in combinations of the 838 Advanced Sample Processor with the Metrohm VA instruments, e.g. the VA Computrace 797. Synchronizing the instruments is achieved by activating signals via Remote lines.

An overview of the standard methods for voltammetric analysis stored in the 838 is given below.

<table>
<thead>
<tr>
<th>Method name</th>
<th>Function</th>
</tr>
</thead>
</table>
| LAT | Linear Approximation Technique
Standard addition for brightener (electroplating bath analysis) |
| MLAT | Modified Linear Approximation Technique
Standard addition for brightener (electroplating bath analysis) |
| DT | Dilution Titration
Suppressor analysis ("Dilution Titration Technique", electroplating bath analysis) |
| VA | Voltammetric Trace Analysis |

We recommend that each new method is worked through step by step with the TRACE function before it is started for the first time and adapted to suit the particular requirements.
3.8.1 Method "LAT"

LAT = Linear Approximation Technique

Application

Brightener analysis (electroplating bath analysis)

System setup

See 8.838.1303 Installation Instructions, Section 3.6 or 8.797.1013 Hardware Manual of the 797 VA Computrace, Section 2.11.5.

Run sequences for the 838 Advanced Sample Processor

<table>
<thead>
<tr>
<th>838 Advanced S.Proc.</th>
<th>00030 5.838.0010</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameters</td>
<td></td>
</tr>
<tr>
<td>method</td>
<td>LAT</td>
</tr>
<tr>
<td>number of samples:</td>
<td>rack</td>
</tr>
<tr>
<td>>start sequence</td>
<td></td>
</tr>
<tr>
<td>1 CTL:Rm:</td>
<td>INIT</td>
</tr>
<tr>
<td>2 MOVE 1 :</td>
<td>sample</td>
</tr>
<tr>
<td>3 CTL:Rm:</td>
<td>***************1</td>
</tr>
<tr>
<td>4 CTL:Rm:</td>
<td>***************0</td>
</tr>
<tr>
<td>>sample sequence</td>
<td></td>
</tr>
<tr>
<td>1 SCN:Rm</td>
<td>***1</td>
</tr>
<tr>
<td>2 MOVE 1 :</td>
<td>sample</td>
</tr>
<tr>
<td>3 LIFT: 1 :</td>
<td>work mm</td>
</tr>
<tr>
<td>4 PERISTALT: 300 s</td>
<td>10</td>
</tr>
<tr>
<td>5 CTL:Rm:</td>
<td>***************1</td>
</tr>
<tr>
<td>6 CTL:Rm:</td>
<td>***************0</td>
</tr>
<tr>
<td>7 MOVE 1 :</td>
<td>+28</td>
</tr>
<tr>
<td>8 LIFT: 1 :</td>
<td>work mm</td>
</tr>
<tr>
<td>9 PERISTALT: 5 s</td>
<td>10</td>
</tr>
<tr>
<td>10 SCAN:Rm</td>
<td>***1</td>
</tr>
<tr>
<td>11 PERISTALT: 300 s</td>
<td>10</td>
</tr>
<tr>
<td>12 CTL:Rm:</td>
<td>***************1</td>
</tr>
<tr>
<td>13 CTL:Rm:</td>
<td>***************0</td>
</tr>
<tr>
<td>>final sequence</td>
<td></td>
</tr>
<tr>
<td>changer settings</td>
<td></td>
</tr>
<tr>
<td>dosing unit def.</td>
<td></td>
</tr>
<tr>
<td>timeout settings</td>
<td></td>
</tr>
<tr>
<td>manual stop</td>
<td></td>
</tr>
</tbody>
</table>

----- miscellaneous settings -----
3.8 Standard methods

Note: Although the first sample is placed on position 2, position 1 remains the starting position in the start sequence of the method at the 838 (recording the "Intercept value").

Before each start, define the position of the first sample vessel. Press the `<SAMPLE>` key of the 838 keypad and enter the rack position.

Find more information in the 8.797.8011 Software Manual of the 797 VA Computrace, see section 8.6.
3.8 Standard methods

3.8.2 Methode "MLAT"

MLAT = Modified Linear Approximation Technique

Application

Brightener analysis

System setup

See 8.838.1303 Installation Instructions, Section 3.6 or 8.797.1013 Hardware Manual of the 797 VA Computrace, Section 2.11.4.

Run sequences for the 838 Advanced Sample Processor

<table>
<thead>
<tr>
<th>838 Advanced S.Proc.</th>
<th>00030 5.838.0010</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameters</td>
<td></td>
</tr>
<tr>
<td>method</td>
<td>MLAT</td>
</tr>
<tr>
<td>number of samples:</td>
<td>rack</td>
</tr>
</tbody>
</table>

>start sequence

1 CTL:Rm: INIT
2 MOVE 1 : sample
3 CTL:Rm: *************1
4 CTL:Rm: *************0

>sample sequence

1 SCN:Rm : *****1**
2 DOS: 1.* : 30 mL
3 DOS: 2.* : 1 mL
4 CTL:Rm: *************1
5 CTL:Rm: *************0
6 DOS: *. : fill mL
7 SCN:Rm : *****1**
8 MOVE 1 : sample
9 LIFT: 1 : work mm
10 PERISTALT: 300 s 10
11 CTL:Rm: *************1
12 CTL:Rm: *************0
13 MOVE 1 : +28
14 LIFT: 1 : work mm
15 PERISTALT: 5 s 10
16 SCN:Rm : *****1**
17 PERISTALT: 300 s 10
18 CTL:Rm: *************1
19 CTL:Rm: *************0

>final sequence

changer settings

dosing unit def.

timeout settings

manual stop

--- miscellaneous settings ---

Note: The command lines 1 to 6 are only necessary, if dosing drives are connected to the Sample Processor for adding auxiliary solutions. In the 797 VA Computrace software the parameter "Dose auxiliary solution via sample processor" in the configuration dialog "Settings / General settings / Automation" must be activated.

If adding of auxiliary solutions is operated by the 797 VA Computrace, line 1 to 6 have to be deleted.
Using the method above, it is assumed that dosing drive 1 adds the VMS solution and dosing drive 2 adds suppressor solution. The intercept solution is there mixed in situ by the 838 Advanced Sample Processor in the measuring cell.

The volumes added in method line 2 and 3 of the sample sequence are to be adapted to the specific application. It is recommended to save the modified methods separately under specific method names.

Only similar samples which require the same amount of auxiliary solutions can be processed in one sample series.

6.2041.450 sample rack

50 mL sample vessels can be placed on the two outer rings (11 mL sample vessels on the two inner rings).

Arrangement: Place the samples solutions on the outer and the rinsing solutions on the inner of the two rings.

Example for an arrangement with 11 samples:

⇒ With 50 mL sample vessels: first sample on position 1, first rinsing solution on position 29:

⇒ With 11 mL sample vessels: first sample on position 57, first rinsing solution on position 85.
Before each start, define the position of the first sample vessel. Press the `<SAMPLE>` key of the 838 keypad and enter the rack position.

Find more information in the 8.797.8011 Software Manual of the 797 VA Computrace, see section 8.6.
3.8 Standard methods

3.8.3 Method "DT"

DT = Dilution Titration

Application
Suppressor determination

System setup
See 8.838.1303 Installation Instructions, Section 3.6 or 8.797.1013 Hardware Manual of the 797 VA Computrace, Section 2.11.3.

Run sequences for the 838 Advanced Sample Processor

<table>
<thead>
<tr>
<th>838 Advanced S.Proc.</th>
<th>00030 5.838.0010</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameters</td>
<td></td>
</tr>
<tr>
<td>method</td>
<td>DT</td>
</tr>
<tr>
<td>number of samples:</td>
<td>20</td>
</tr>
</tbody>
</table>

>start sequence
1 CTL:Rm: INIT
2 MOVE 1 : sample
3 CTL:Rm: *************1
4 CTL:Rm: *************0

>sample sequence
1 SCN:Rm: *****1**
2 MOVE 1 : sample
3 LIFT: 1 : work mm
4 CTL:Rm: *************1
5 CTL:Rm: *************0
6 SCN:Rm: *****1**
7 DOS: 1.* : 50 mL
8 CTL:Rm: *************1
9 CTL:Rm: *************0
10 DOS: 1.* : fill mL

>final sequence
1 SCN:Rm: *****1**
2 MOVE 1 : next
3 LIFT: 1 : work mm
4 CTL:Rm: *************1
5 CTL:Rm: *************0

>changer settings
>stirring rates
>dosing unit def.
>timeout settings
>manual stop

- report header with instrument ID and program version
- method name
- number of samples (e. g. 20)
- initialize all Remote lines
- approach first sample
- remote start of the 797 VA Computrace
- wait for advance signal of the 797 VA Computrace
- approach sample
- run lift and needle to work position
- set Remote line: Sample ready
- wait for advance signal of the 797 VA Computrace
- add auxiliary solution (e. g. VMS) with Dosino
- set Remote line: auxiliary solution ready
- fill dosing unit
- wait for advance signal of the 797 VA Computrace
- approach next rack position
- run needle to work position
- set Remote line: cleaning solution ready

----- miscellaneous settings -----

Note: The command lines 6 to 10 are only necessary, if a dosing drive is connected to the Sample Processor for adding auxiliary solution. In the 797 VA Computrace software the parameter "Dose auxiliary solution via sample processor" in the configuration dialog "Settings / General settings / Automation" must be activated.

If adding of auxiliary solution is operated by the 797 VA Computrace, line 6 to 10 have to be deleted.

Using the method above, it is assumed that dosing drive 1 adds the VMS solution. The volume added in method line 7 of the sample sequence has to be adapted to the specific application. It is recom-
mended to save the modified methods separately under specific method names.

Only similar samples which require the same amount of auxiliary solutions can be processed in one sample series.

Samples

The method parameter ‘Number of samples’ has to correspond exactly to the real number of samples. Place a vessel with rinsing solution at the end of the series on the rack.

6.2041.450 sample rack

Samples and auxiliary solutions are placed on the rack. It is recommended to use the two inner rings with 11 ml sample vessels. How frequently the calibration curve needs to be recorded (with Calibration technique "DT Record calibration curve") depends on the chemistry of the bath.

Note: Place a vessel with water at the end of the series on the rack.

Arrangement: At the first position a Suppressor standard solution to record the calibration curve. Then samples, and, when a recalibration is necessary, another Suppressor standard solution. At the end of the series place a vessel with water.

Example for a sample rack with 14 samples, 2 Suppressor standard solutions and one rinsing solution:

Before each start, define the position of the first sample vessel. Press the `<SAMPLE>` key of the 838 keypad and enter the rack position.

Find more information in the 8.797.8011 Software Manual of the 797 VA Computrace, see section 8.6.
3.8 Standard methods

3.8.4 Method "VA"

VA = Voltammetric trace analysis

Application
Voltammetric trace analysis

System setup
See 8.838.1303 Installation Instructions, Section 3.6 or 8.797.1013 Hardware Manual of the 797 VA Computrace, Section 2.11.

Run sequences for the 838 Advanced Sample Processor

<table>
<thead>
<tr>
<th>838 Advanced S.Proc.</th>
<th>00030 5.838.0010</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameters</td>
<td></td>
</tr>
<tr>
<td>method</td>
<td>VA</td>
</tr>
<tr>
<td>number of samples:</td>
<td>rack</td>
</tr>
</tbody>
</table>

>start sequence

1 CTL:Rm: INIT
2 MOVE 1 : sample
3 CTL:Rm: *************1
4 CTL:Rm: *************0

>samp...
⇒ With 11 mL sample vessels: first sample on position 57, first rinsing solution on position 85.

Before each start, define the position of the first sample vessel. Press the <SAMPLE> key of the 838 keypad and enter the rack position.

Find more information in the 8.797.8011 Software Manual of the 797 VA Computrace, see section 8.5.
4 Index

A Absolute positioning............ 36
Absorber tube..................... 55
Acknowledgement.................. 30
Active.......................... 41, 43, 68
Adjustment....................... 71
Adjustment rate............... 75
Air bubbles......................... 56
Air inlet.......................... 30
Air inlet opening............... 55
Angle............................... 74
Angle of rotation............... 35
Angle of rotation offset...... 75
Angle positions................. 35
Approach position.............. 35

Arrow keys......................... 5, 13
ASCII character.................. 42
Aspirate.......................... 40
Aspirating air................... 57
Aspiration......................... 61
Attention.......................... 2
AutoInfo.......................... 44
Automatic emptying............. 62
Automatic rack recognition... 66
Axis distance..................... 74
Axis of rotation................ 74

B Basic settings................... 16, 18
Battery.............................. 76
Baud.................................. 24
Beaker............................... 64
Beaker radius..................... 18, 20, 66
Bechersensor...................... 66
Beep................................. 16
Binary code........................ 65
Binary pattern.................... 41, 68
Brightener......................... 80, 81, 83

C Changer settings................ 27
Changing dosing unit 57, 62
Character selection.......... 14
Character set.................... 24
Cock direction................... 30
Code................................. 20
Colon................................. 13
Command.............................. 26
Command keys................... 6
Command line..................... 26
Command sequence............. 25
Commands........................... 34
Communication commands 41
Compensate....................... 58
Compensation..................... 63
Configuration.................... 5, 16
Configuration menu............. 16, 72
Connecting rod.................. 63
Continue method................. 48
Contrast of display........... 16
Control command................ 68
Coupling........................... 63
Creating methods............... 26
CTL.................................... 51, 68
CTL:Rm command................ 43
Current sample position.... 6

D Danger............................... 2
Data bits.......................... 24
Data input......................... 6, 13
Data reception................... 24
Data transmission via serial interface...... 44
Default port..................... 39, 61
Default value.................... 6
Delete.............................. 6, 14, 22
Delete character............... 14
Delete line........................ 26
Delete rack definitions...... 22
Deleting methods............... 46
Diagnosis........................... 78
Dialog arrangement............. 12
Dialog language................ 16
Diaper................................ 23
Dilution Titration.............. 80, 86
Direction of rotation........ 27, 30, 36
Disable configuration........ 72
Disable display................... 73
Disable keypad................... 72
Disable method storage...... 73
Disable parameter............... 72
Display.............................. 3, 4
Disposible beaker.............. 64
DOS command..................... 51, 60
Dosimat.............................. 23, 29, 39, 51, 54
Dosing............................... 54, 56, 61
Dosing cylinder................ 60
Dosing cylinder ejection..... 58
Dosing device..................... 7
Dosing device connection...... 23, 29
Dosing device control........... 39
Dosing device settings........ 29
Dosing devices................... 39
Dosing drive....................... 23
Dosing functions............... 40
Dosing instruments............. 54
Dosing outlet...................... 55
Dosing port......................... 29, 39, 51
Dosing rate......................... 29
Dosing unit........................ 55
Dosing units....................... 23
Dosino.......................... 29, 39, 54, 59
Dosino commands............... 40
Drawing up a method.......... 25
DT.................................. 86

786 Swing Head.............. 18, 35, 74

Metrohm 838 Advanced Sample Processor, Index
Duration 39
Eject 40, 63
Ejecting 63
Elimination of mechanical play 58
Empty 57, 62
Emptying the dosing unit 30
End volume 58, 63
EndVol 40, 63
Entry 6
EOD 69
Error message 10, 30
Exchange units 23
Ext. 1 35
External position 19, 35, 70
External start 16, 48, 68
Fault 76
Fill 56
‘FILL’ 4
Fill air bubble-free 62
Fill automatically 40
Fill tubing 56, 62
Filling 61
Filling inlet 55
Filling port 29
Filling rate 29
Final sequence 26
First sample 6
Function selection 39
Functions 40
Gentle stop 48
Handshake 24
HOLD condition 10
Hold method sequence 10
HOLD status 48, 76
IBM 24
Impulses 43
Inactive 41, 43
Initial value 11
Initialize 6
Initialize rack 9, 45, 53
Initializing the working memory 78
INJECT 4
Insert 13, 16, 68
Instrument dialog 6
Interface control 51
Interface signals 51
Interrupt method 48
Interrupt sample series 48
Interruption 10
Keypad 4
Overview 4
Keys 4, 5
LIFT 50
Lift 50
Lift operation 5
Lift position 70
Lift positioning 37
Lift rate 27
Line condition 41, 43, 68
Linear Approximation Technique 80, 81
Lines 25
Liquid Handling 40, 54
Liquid Handling functions 59
Lower 7, 37
Magnet code 20, 64, 65, 66
Maintenance 17
Manual operation 49
Manual stop 31
Manual stop settings 31
Max. swing angle 74
Max. volume 58
Max. waiting time 30
Mechanical play 40, 63
Method 25
Composition 25
DT 86
LAT 81
MLAT 83
Programming of sequences 83
VA 88
Method parameters 5, 25
Method sequence 10
Methods 5, 46, 80
Fault 76
Fill 56
‘FILL’ 4
Fill air bubble-free 62
Fill automatically 40
Fill tubing 56, 62
Filling 61
Filling inlet 55
Filling port 29
Filling rate 29
Final sequence 26
First sample 6
Function selection 39
Functions 40
Gentle stop 48
Handshake 24
HOLD condition 10
Hold method sequence 10
HOLD status 48, 76
IBM 24
Impulses 43
Inactive 41, 43
Initial value 11
Initialize 6
Initialize rack 9, 45, 53
Initializing the working memory 78
INJECT 4
Insert 13, 16, 68
Instrument dialog 6
Interface control 51
Interface signals 51
Interrupt method 48
Interrupt sample series 48
Interruption 10
Keypad 4
Overview 4
Keys 4, 5
LIFT 50
Lift 50
Lift operation 5
Lift position 70
Lift positioning 37
Lift rate 27
Line condition 41, 43, 68
Linear Approximation Technique 80, 81
Lines 25
Liquid Handling 40, 54
Liquid Handling functions 59
Lower 7, 37
Magnet code 20, 64, 65, 66
Maintenance 17
Manual operation 49
Manual stop 31
Manual stop settings 31
Max. swing angle 74
Max. volume 58
Max. waiting time 30
Mechanical play 40, 63
Method 25
Composition 25
DT 86
LAT 81
MLAT 83
Programming of sequences 83
VA 88
Method parameters 5, 25
Method sequence 10
Methods 5, 46, 80
Overview 80
Min. beaker radius 18
MLAT 83
Modified Linear Approximation Technique 80, 81
MOVE command 35, 49
Move to rack position 35, 49
MSB 39
MSB stirrer 28
Negative volume 40, 61
New command line 26
Next 35
NOP command 26
Notation 2
Number of samples 25
Operating condition 3
Operation 3
Output 41, 68
Output lines 68
Parameter menu 25, 72
Parametrizing 71
Parity 24
Pause 45
Peripheral devices 31
Peristaltic pump 38
Manual control 50
Pictograms 2
Pipetting 40, 61, 63
Port 23, 55
Port assignments 40
Port selection 39
Position table 65
Positioning accuracy 75
POWERUP method 47
Predefined values 11
PREP function 23
Preparation 23
Preparation cycle 29, 56
Prepare 56
Preparing the dosing unit 62
Prevent deletion 73
Prevent loading 73
Prevent method deletion 73
Prevent storage 73
Previous 35
Printer 24
Programming of sequences 32, 34
Protected port 30
Pulsed signal 41
Pump 7
PUMP command 38
Pump connectors 31, 38
Pump control 38

Q
Quit command 48

R
Rack 20
Rack adjustment 71
RACK command 45, 75
Rack data 20, 65
Rack definitions 20
Rack name 20, 21, 27, 66
Rack offset 71
Rack position 6, 21, 34, 36
Rack recognition 9, 65
Rack rotation 6
Raise 7, 37
RAM init 78
Ready 30
Relative positioning 36
Remarks 2
Remote control 24
Remote interface 8, 16, 31, 41, 43, 68
Control 51
Remote lines 8
Removing dosing unit 62
Reserved position 66
Rest position 5, 45
Rinse port 29
Rinse position 37, 66
Rinsing height 19
Rinsing solution 84, 88
Rinsing volumes 23
Robotic arm 35, 74
Robotic arm offset 74
Robotic arm position 70
Rotate position 37, 66
Rotate rack 66
Rotating height 19
Rotating position 36
Rotating the sample rack 6
Rotation increment 27
Rotation rate 27
RS232 24
RS232 interface 24, 31, 41, 42, 44
Data transmission 52
RS232 settings 24
Run control 48
Run sequence 5, 25
Run variable 34
Running time 45
Running time meter 17

S
SAMPLE 50
Sample beakers 25
SAMPLE command 34
Sample position 34
Sample rack 20, 27, 64
Manual operation 49
Sample rack 6.2041.450 81, 84, 87, 88
Sample series 25
Sample tube 64
SAMPLE variable 35
Sample vessel 81, 84, 88
Save rack definitions 21
SCAN command 68
SCAN timeout 30
Scanning the Remote interface ... 41
Scanning the RS232 interface ... 42
SCN 51, 68
SCN:Rm command 41
Seconds counter 45
Select method 46
Select sample position 34
Selecting a stirrer 39
Selection 6
Selection list 5, 13
Selection of the dosing device ... 29
Sequence 26
Serial interface 24
Setting the Remote lines 43
Setting the sample position .. 50
Settings 23
Setup menu 74
Shift position 49
Signal lines 31
Signals 8, 68
Spec.1 35
Special beaker 6, 21, 34, 66
Special beaker positions 35
Special height 21
Special position 21, 37, 66
Standard addition 80
Standard dosing port 29
Standard methods 80
Standard racks 29
Standpipe 55
Start 25
Start method 9, 48
Start sequence 25
Status line 3
Status message 44
STIR command 39
Stirrer 7, 31
Stirrer connections 39
Stirrer control 39, 50
Stirrer models 801, 804 28
Stirrer models 802, 741, 722 28
Stirrer settings 28
Stirring rate 28
Stop bits 24
Stop method 48
Stopcock 30, 60
Stopcock rotation 63
Stopping a sample series 10
Submenu 11
Suppressor 86
Swing angle 19, 35
Swing axis 74
Swing direction 75
Swing increment 27
Swing radius 75
Swing range 35
Swing rate 27
Swing robotic arm 35
Swing to the left 75
Swing to the right 75
Swinging range 74
Switching components 38
Switching the injection valve ... 53
Switching together 39

T
Text cursor 14
Text editor 13
Text input 13
Text input mode 46
Timeout 30
Title line 3
Titration beaker 64
Tolerance 63
Trace analysis 80, 88
TRACE function 26, 33, 80
Transmission parameters 42, 44
Transmission rate 24
Triggers 44
Tubing 23
Tubing dimensions 23
Tubing parameters 23
Tubing system 56

U
User dialog 72

V
VENT 55
Venting 55
Vertical movement rate 27
Voltammetric 80, 88
Volume 40, 56

W
WAIT command 8, 45
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting time</td>
<td>30, 45</td>
</tr>
<tr>
<td>Warning</td>
<td>2, 16</td>
</tr>
<tr>
<td>Warning limit</td>
<td>17</td>
</tr>
<tr>
<td>Wild card</td>
<td>42, 56</td>
</tr>
<tr>
<td>Work pos. T1</td>
<td>70</td>
</tr>
<tr>
<td>Work position</td>
<td>5, 37, 66</td>
</tr>
<tr>
<td>Working height</td>
<td>19</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Zero position</td>
<td>37</td>
</tr>
</tbody>
</table>