

Agilent 1260 Infinity Preparative Pump

User Manual

Agilent Technologies

Notices

© Agilent Technologies, Inc. 2006, 2007-2011

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

G1361-90012

Edition

02/2011

Printed in Germany

Agilent Technologies Hewlett-Packard-Strasse 8 76337 Waldbronn

This product may be used as a com-ponent of an in vitro diagnostic sys-tem if the system is registered with the appropriate authorities and com-plies with the relevant regula-tions. Otherwise, it is intended only for gen-eral laboratory use.

] gwgtz€&

888

The material contained in this document is provided "as is," and is subiect to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Contents

1 Introduction to the Preparative Pump 7

Introduction to the Preparative Pump 8 Instrument Layout 12 The Electronics 13 Electrical Connections 14 Interfaces 16

2 Site Requirements and Specifications 23

Site Requirements 24 Physical Specifications 27 Performance Specifications 28

3 Installing the Pump 29

Unpacking the Preparative Pump 30 Optimizing the Stack Configuration 34 Installing the Preparative Pump 36 Connecting Modules and Control Software 40 Flow Connections for a Single (Isocratic) Preparative Pump 42 Flow Connections for a Dual (Binary Gradient) Preparative Pump 45 Get the System Ready for the First Analysis 49

4 Using the Preparative Pump 51

Hints for Successful Use of the Preparative Pump52Solvent Information53Prevent Blocking of Solvent Filters54Algae Growth in HPLC Systems55Setting Up the Pump57

Contents

5 Optimizing Performance 65

How to Configure the Seal Wash Function 66 How to Optimize the Compressibility Compensation Setting 67

6 Troubleshooting and Diagnostics 69

Agilent Lab Advisor software 70 Overview of the Pump's Indicators and Test Functions 71 Status Indicators 72 User Interfaces 74 Error Messages 75 Pressure Test 94 Leak Test 98 EMPV Cleaning 103

7 Maintenance 107

Introduction to Maintenance and Repair 108 Overview of Maintenance and Repair 112 Simple Repairs 114

8 Parts and Materials for Maintenance 133

Pump Housing and Main Assemblies134Pump-Head Assembly138Solvent Cabinet and Solvent Inlet Parts140Hydraulic Path142Preparative Pump Basis Kit145Preparative Pump Gradient Kit147

9 Configuring the Preparative Pump 149

Preparative Pump Main Board (PPM) 150 Optional Interface Boards 155 Interfaces 159 Main Power Supply Assembly 164

10 Appendix 167

General Safety Information 168 The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC) 172 Lithium Batteries Information 173 Radio Interference 174 Sound Emission 175 Solvent Information 176 Agilent Technologies on Internet 178

Contents

Introduction to the Preparative Pump

Introduction to the Preparative Pump 8 Hydraulic Path Overview 9 How Does Compressibility Compensation Work? 10 Early Maintenance Feedback (EMF) 11 Instrument Layout 12 The Electronics 13 Electrical Connections 14 Interfaces 16

Introduction to the Preparative Pump

The preparative pump is a cam driven pump, with fixed stroke and two parallel pistons, each with (identical ball and seat) inlet and outlet valve. Each of the two pump pistons is capable of delivering a maximum of 50 ml/min flow at up to 400 bar pressure.

The two cams have overlapping delivery cycles. Compression losses are calculated and smooth delivery is ensured through variation of the motor speed over the pump cycle.

The pistons are guided through two seals each. The gap between those seals is connected to capillary fittings, this way seal wash is not only an option, but integral part of every pump. A peristaltic pump, to automate seal wash, is also part of the system.

Figure 1

Overview of the Preparative Pump

Hydraulic Path Overview

The pump flow leaving the pump head passes through the multi-assembly, which combines the flow of the two pistons, filters the solvent and contains a pressure sensor to monitor system pressure. No hydraulic damper is included in the system. This makes very fast gradients possible. From the multi-assembly the flow is routed to the purge valve and from there either directly into waste or on to the next module (normally injection valve or sampling device).

Gradients are formed with two combined pumps, as high pressure gradients. The combined flow, is flowing through a passive mixer, to smooth composition. With its high pressure mixing principle gradient systems and the usually high flow rates, no degassing of solvents is necessary.

To avoid outgassing in the detector cell a back pressure regulating device is recommended for applications that demand it.

Figure 2 Schematics of the Preparative Pump

1 Introduction to the Preparative Pump

Introduction to the Preparative Pump

Materials in contact with mobile phase			
Bottle head assembly	glass frits, PTFE compounds, PEEK		
Pump head	SST, sapphire		
Inlet/Outlet Valves	SST, sapphire, ruby, PEEK		
EMPV	SST, ruby, sapphire, PEEK		
Filter Cup	SST		
Filter Plate	SST, PEEK		
Pressure Sensor	SST, PEEK		
Capillaries	SST		

Table 1 Preparative Pump Details

For pump specifications, see "Site Requirements" on page 24.

How Does Compressibility Compensation Work?

The compressibility of the solvents in use will affect retention-time stability when the back pressure in the system changes (for example, ageing of column). In order to minimize this effect, the pump provides a compressibility compensation feature which optimizes the flow stability according to the solvent type. The compressibility compensation is set to a default value and can be changed through the user interface.

Without a compressibility compensation the following will happen during a stroke of the first piston. The pressure in the piston chamber increases and the volume in the chamber will be compressed depending on backpressure and solvent type. The volume displaced into the system will be reduced by the compressed volume.

When a compressibility compensation value for the pump head is set, the pump processor calculates a compensation volume that depends on the system pressure and the selected compressibility value. The pump has a fixed stroke. To compensate for compressibility losses, the speed of the piston movement has to be varied during the different parts of each stroke.

Early Maintenance Feedback (EMF)

The early maintenance feedback (EMF) feature monitors the usage of specific components in the instrument, and provides feedback when the user-settable limits have been exceeded. The visual feedback in the user interface provides an indication that maintenance procedures should be scheduled.

For details on EMF counters and how to use them, see Agilent Lab Advisor.

1 Introduction to the Preparative Pump Instrument Layout

Instrument Layout

The industrial design of the module incorporates several innovative features. It uses Agilent's E-PAC concept for the packaging of electronics and mechanical assemblies. This concept is based upon the use of expanded polypropylene (EPP) layers foam plastic spacers in which the mechanical and electronic boards components of the module are placed. This pack is then housed in a metal inner cabinet which is enclosed by a plastic external cabinet. The advantages of this packaging technology are:

- virtual elimination of fixing screws, bolts or ties, reducing the number of components and increasing the speed of assembly/disassembly,
- the plastic layers have air channels molded into them so that cooling air can be guided exactly to the required locations,
- the plastic layers help cushion the electronic and mechanical parts from physical shock, and
- the metal inner cabinet shields the internal electronics from electromagnetic interference and also helps to reduce or eliminate radio frequency emissions from the instrument itself.

The Electronics

The electronics are comprised of four main components:

- The preparative pump main board (PPM), see "Preparative Pump Main Board (PPM)" on page 150.
- Power supply, see "Main Power Supply Assembly" on page 164.

Optional:

- Interface board (BCD/external contacts), see "BCD / External Contact Board" on page 155
- LAN Communication Card, see "LAN Communication Interface Board" on page 157.

Main Board

The board controls all information and activities of all assemblies within the module. The operator enters parameters, changes modes and controls the module through interfaces (CAN, GPIB or RS-232C), connected to the user-interfaces.

Main Power Supply Assembly

The main power supply comprises a closed assembly (no on-site repair possibility). The power supply provides all DC voltages used in the module except for the voltages supplied by the lamp power supply to the deuterium and tungsten lamps in the detectors.

The line voltage can vary in a range from 100 – 240 volts AC \pm 10% and needs no manual setting.

Optional Interface Boards

The Agilent 1260 Infinity modules have one optional board slot that allows to add an interface board to the modules. Optional interface boards for the Agilent 1260 Infinity Series are:

- BCD Board
- LAN Communication Card

1 Introduction to the Preparative Pump Electrical Connections

Electrical Connections

- The GPIB connector is used to connect the module with a computer. The address and control switch module next to the GPIB connector determines the GPIB address of your module. The switches are preset to a default address and is recognized once after power is switched ON.
- The CAN bus is a serial bus with high speed data transfer. The two connectors for the CAN bus are used for internal Agilent 1260 Infinity module data transfer and synchronization.
- One analog output provides signals for integrators or data handling systems.
- The interface board slot is used for external contacts and BCD bottle number output or LAN connections.
- The REMOTE connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as start, stop, common shut down, prepare, and so on.
- With the appropriate software, the RS-232C connector may be used to control the module from a computer through a RS-232C connection. This connector is activated and can be configured with the configuration switch. See your software documentation for further information.
- The power input socket accepts a line voltage of 100 240 volts AC ± 10% with a line frequency of 50 or 60 Hz. Maximum power consumption is 220 VA. There is no voltage selector on your module because the power supply has wide-ranging capability. There are no externally accessible fuses, because automatic electronic fuses are implemented in the power supply. The security lever at the power input socket prevents the module cover from being taken off when line power is still connected.

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Introduction to the Preparative Pump 1 Electrical Connections

Figure 3 Rear View of Preparative Pump - Electrical Connections and Label

1 Introduction to the Preparative Pump Interfaces

Interfaces

The Agilent 1200 Infinity Series modules provide the following interfaces:

Table 2	Agilent 1200 I	nfinity Series	Interfaces
---------	----------------	----------------	------------

Module	CAN	LAN/BCD (optional)	LAN (on-board)	GPIB	RS-232	Analog	APG Remote	Special
Pumps								
G1310A ISO G1311A QUAT G1312A BIN G2226A NANO	2	Yes	No	Yes	Yes	1	Yes	
G1312B BIN SL	2	Yes	No	Yes	Yes	1	Yes	
G1361A PREP	2	Yes	No	No	Yes	No	Yes	CAN-DC- OUT for CAN slaves
Samplers								
G1313A STD	2	Yes	No	Yes	Yes	No	Yes	
G1329A STD G1329B STD SL G2260A PREP	2	Yes	No	Yes	Yes	No	Yes	THERMOSTAT for G1330A/B
G1364A FRC G1367A/B/C/D WPS G1377A μWPS G2258A D-LOOP	2	Yes	No	Yes	Yes	No	Yes	THERMOSTAT for G1330A/B CAN-DC- OUT for CAN slaves
Detectors								
G1314A/B VWD	2	Yes	No	Yes	Yes	1	Yes	
G1314C VWD SL	2	Yes	No	No	Yes	1	Yes	
G1314D VWD	2	No	Yes	No	Yes	1	Yes	
G1314E VWD SL+	2	No	Yes	No	Yes	1	Yes	

Module	CAN	LAN/BCD (optional)	LAN (on-board)	GPIB	RS-232	Analog	APG Remote	Special
G1315A/B DAD G1365A/B MWD	2	Yes	No	Yes	Yes	2	Yes	
G1315C DAD SL G1365C MWD SL G1315D DAD G1365D MWD	2	No	Yes	No	Yes	2	Yes	
G1321A FLD G1362A RID	2	Yes	No	Yes	Yes	1	Yes	
G4280A ELSD	No	No	NO	No	Yes	Yes	Yes	EXT Contact AUTOZERO
Others								
G1316A TCC	No	No	No	А	Yes	No	Yes	
G1316B TCC SL	No	No	No	А	Yes	No	Yes	
G1322A DEG	No	No	No	No	No	No	Yes	AUX
G1379A DEG	No	No	No	No	Yes	No	No	AUX
G4240A CHIP CUBE	2	Yes	No	No	Yes	No	Yes	CAN-DC- OUT for CAN slaves THERMOSTAT for G1330A/B (NOT USED

Table 2 Agilent 1200 Infinity Series Interfaces

- CAN connectors as interface to other Agilent 1200 Infinity Series modules,
- GPIB connector as interface to the Agilent ChemStation,
- RS-232C as interface to a computer,
- REMOTE connector as interface to other Agilent products,
- analog output connector(s) for signal output, and
- interface slot for specific interfacing (external contacts, BCD, LAN and so on).

For identification and location of the connectors, see the module manual.

1 Introduction to the Preparative Pump

Interfaces

NOTE

Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

CAN

The CAN is inter-module communication interface. It is a 2-wire serial bus system supporting high speed data communication and real-time requirement.

NOTE

If a Agilent 1260 Infinity detector (DAD/MWD/FLD/VWD/RID) is in the system, the LAN should be connected to the DAD/MWD/FLD/VWD/RID (due to higher data load). If no Agilent detector is part of the system, the LAN interface should be installed in the pump or autosampler.

LAN

The 1200 Infinity modules have either an interface slot for an LAN card (e.g. Agilent G1369A LAN Interface) or they have an on-board LAN interface (e.g. detectors G1315C/D DAD and G1365C/D MWD). This interface allows the control of the module/system via a connected PC with the appropriate control software (e.g. Agilent ChemStation).

GPIB

This interface is not available in all modules and may be removed from the modules in future.

The GPIB connector is used to connect the module with a computer. The address and control switches next to the GPIB connector determine the GPIB address of your module. The switches are preset to a default address and recognized by the operating software from Agilent Technologies.

RS-232C (Serial)

The RS-232C connector is used to control the module from a computer through RS-232C connection, using the appropriate software. This connector can be configured with the configuration switch module next to the GPIB connector.

The RS-232C is designed as DCE (data communication equipment) with a 9-pin male SUB-D type connector. The pins are defined as:

Figure 4 RS-232 Cable

Analog Signal Output

The analog signal output (e.g. detector signal or pump pressure signal) can be distributed to a recording device. For details refer to the description of the main board of the module.

APG Remote

The APG Remote connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features as common shut down, prepare, and so on.

Remote control allows easy connection between single instruments or systems to ensure coordinated analysis with simple coupling requirements.

The subminiature D connector is used. The module provides one remote connector which is inputs/outputs (wired-or technique).

To provide maximum safety within a distributed analysis system, one line is dedicated to SHUT DOWN the system's critical parts in case any module detects a serious problem. To detect whether all participating modules are switched on or properly powered, one line is defined to summarize the POWER ON state of all connected modules. Control of analysis is maintained NOTE

by signal readiness READY for next analysis, followed by START of run and optional STOP of run triggered on the respective lines. In addition PREPARE and START REQUEST may be issued. The signal level are defined as:

- standard TTL levels (0 V is logic true, + 5 V is false)
- fan-out is 10,
- input load is 2.2 kOhm against + 5 V, and
- output are open collector type, inputs/outputs (wired-or technique).

All common TTL circuits operate with a 5 volt power supply. A TTL signal is defined as "low" or L when between 0 V and 0.8 V and "high" or H when between 2.0 V and 5 V (with respect to the ground terminal).

_		
Pin	Signal	Description
1	DGND	Digital ground
2	PREPARE	(L) Request to prepare for analysis (for example, calibration, detector lamp on). Receiver is any module performing pre-analysis activities.
3	START	(L) Request to start run / timetable. Receiver is any module performing run-time controlled activities.
4	SHUT DOWN	(L) System has serious problem (for example, leak: stops pump). Receiver is any module capable to reduce safety risk.
5		Not used
6	POWER ON	(H) All modules connected to system are switched on. Receiver is any module relying on operation of others.
7	READY	(H) System is ready for next analysis. Receiver is any sequence controller.
8	STOP	(L) Request to reach system ready state as soon as possible (for example, stop run, abort or finish and stop injection). Receiver is any module performing run-time controlled activities.
9	START REQUEST	(L) Request to start injection cycle (for example, by start key on any module). Receiver is the autosampler.

Table 3 Remote Signal Distribution

Special Interfaces

Some 1260 Infinity modules have module specific interfaces/connectors. They are described in the module documentation.

1 Introduction to the Preparative Pump Interfaces

Site Requirements and Specifications

Site Requirements 24 Power Consideration 24 Power Cords 25 Bench Space 26 Environment 26 Physical Specifications 27 Performance Specifications 28

2 Site Requirements and Specifications Site Requirements

Site Requirements

A suitable environment is important to ensure optimum performance of the instrument.

Power Consideration

The module power supply has wideranging capability (see Table 4 on page 27). It accepts any line voltage in the range described in the above mentioned table. Consequently there is no voltage selector in the rear of the module. There are also no externally accessible fuses, because automatic electronic fuses are implemented in the power supply.

WARNING

Incorrect line voltage at the instrument

Shock hazard or damage of your instrumentation can result, if the devices are connected to a line voltage higher than specified.

→ Connect your instrument to the specified line voltage.

WARNING

Module is partially energized when switched off, as long as the power cord is plugged in.

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened and the module is connected to power.

- → Remove the power cable from the instrument before opening the cover.
- → Do not connect the power cable to the Instrument while the covers are removed.

CAUTION

Unaccessable power plug.

In case of emergency it must be possible to disconnect the instrument from the power line at any time.

- → Make sure the power connector of the instrument can be easily reached and unplugged.
- Provide sufficient space behind the power socket of the instrument to unplug the cable.

Power Cords

Different power cords are offered as options with the module. The female end of all power cords is identical. It plugs into the power-input socket at the rear of the module. The male end of each power cord is different and designed to match the wall socket of a particular country or region.

WARNING

The absence of ground connection and the use of an unspecified power cord can lead to electric shock or short circuit.

Electric Shock

- Never operate your instrumentation from a power outlet that has no ground connection.
- → Never use a power cord other than the Agilent Technologies power cord designed for your region.

WARNING

Use of unsupplied cables

Using cables not supplied by Agilent Technologies can lead to damage of the electronic components or personal injury.

→ Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

2 **Site Requirements and Specifications Site Requirements**

Bench Space

The module dimensions and weight (see Table 4 on page 27) allow to place the module on almost any laboratory bench. It needs an additional 2.5 cm (1.0 inches) of space on either side and approximately 8 cm (3.1 inches) in the rear for the circulation of air and electric connections.

If the bench should carry a complete Agilent 1260 Infinity system, make sure that the bench is designed to carry the weight of all the modules.

NOTE

The module should be operated in a horizontal position!

For a complete system including multiple pumps, it is recommended to position the modules in two or more stacks.

Environment

Your module will work within specifications at ambient temperatures and relative humidity as described in Table 4 on page 27.

CAUTION

Condensation within the module

Condensation will damage the system electronics.

- → Do not store, ship or use your module under conditions where temperature fluctuations could cause condensation within the module.
- If your module was shipped in cold weather, leave it in its box and allow it to warm slowly to room temperature to avoid condensation.

Physical Specifications

Туре	Specification	Comments
Weight	15.0 kg (34 lbs)	
Dimensions (width × depth × height)	200 x 345 x 440 mm (8 x 13.5 x 18 inches)	
Line voltage	100 - 240 VAC, ± 10%	Wide-ranging capability
Line frequency	50 or 60 Hz, ± 5%	
Power consumption	250 VA / 210 W / 717 BTU	Maximum
Ambient operating temperature	4–40 °C (41–104 °F)	
Ambient non-operating temperature	-40-70 °C (-4-158 °F)	
Humidity	< 95%, at 25–40 °C (77–104 °F)	Non-condensing
Operating Altitude	Up to 2000 m (6500 ft)	
Non-operating altitude	Up to 4600 m (14950 ft)	For storing the module
Safety standards: IEC, CSA, UL	Installation Category II, Pollution Degree 2	For indoor use only.

Table 4 Physical Specifications

Performance Specifications

Туре	Specification
Hydraulic system	Dual pistons in parallel
flow rangeSettable	0.001 – 100 ml/min
Flow precision	< 0.5 % RSD
Pressure range	20 to 400 bar (5880 psi) system pressure
Compressibility compensation	User-selectable, based on mobile phase compressibility
Recommended pH range	1.0-12.5, solvents with pH < 2.3 should not contain acids which attack stainless steel.
Control and data evaluation	Agilent ChemStation for LC and LC/MS
Communications	Controller-area network (CAN), RS-232, APG Remote: ready, start, stop and shut-down signals, CAN-DC OUT, LAN optional
Safety and maintenance	Extensive diagnostics, error detection and display (through Agilent ChemStation), leak detection, safe leak handling, leak output signal for shutdown of pumping system. Low voltages in major maintenance areas.
GLP features	Early maintenance feedback (EMF) for continuous tracking of instrument usage in terms of seal wear and volume of pumped mobile phase with user-settable limits and feedback messages. Electronic records of maintenance and errors.
Housing	All materials recyclable.

Table 5 Performance Specification Agilent 1260 Infinity Preparative Pump

Installing the Pump

Unpacking the Preparative Pump 30 Damaged Packaging 30 **Delivery Checklist** 30 Basic Kit Contents 32 Gradient Kit Contents 33 **Optimizing the Stack Configuration** 34 **Preparative System** 34 Installing the Preparative Pump 36 Connecting Modules and Control Software 40 Connecting Agilent 1260 Infinity modules 40 Connecting control software control module 41 Flow Connections for a Single (Isocratic) Preparative Pump 42 Flow Connections for a Dual (Binary Gradient) Preparative Pump 45 49 Get the System Ready for the First Analysis Priming your preparative LC system with the pump 49

Unpacking the Preparative Pump

Damaged Packaging

Upon receipt of your quaternary pump, inspect the shipping containers for any signs of damage. If the containers or cushioning material are damaged, save them until the contents have been checked for completeness and the quaternary pump has been mechanically and electrically checked. If the shipping container or cushioning material is damaged, notify the carrier and save the shipping material for the carrier's inspection.

Delivery Checklist

Ensure all parts and materials have been delivered with the preparative pump. The delivery checklist is shown in Table 6 on page 31 till Table 9 on page 33. To aid in parts identification, please see "Parts and Materials for Maintenance" on page 133. There are two different kits that can possibly be delivered with the pump:

- **1** A *Basis kit (G1361-68708)* is delivered with every isocratic configuration or if the pump is the first pump in a system (isocratic configuration, order No. G1361A).
- **2** A *Gradient kit (G1361-68707)* is delivered with every additional pump that is added to a system's first pump (gradient configuration, order No. G1391A).

Please report missing or damaged parts to your local Agilent Technologies sales and service office.

Description	Quantity
Preparative Pump	1
Corrugated waste tubing	1
Power cable (local)	1
Service Manual	1
Solvent cabinet	1
Basis kit (see Table 8 on page 32)	1 with every FIRST (G1361A) pump of a system, only!

 Table 6
 First Preparative Pump (G1361A) Delivery Checklist

Table 7 Gradient Preparative Pump (G1391A) Delivery Checklist

Description	Quantity
Preparative Pump	1
Corrugated waste tubing	1
Power cable (local)	1
Gradient kit (see Table 9 on page 33)	1 with very ADD-ON (G1391A) pump of a system!

3 Installing the Pump

Unpacking the Preparative Pump

Basic Kit Contents

Description	Part Number	Quantity
Bottle head assembly	G1361-60022	1
Tube seal wash, 2 m	0890-1764	1
Waste tube, reorder No.	5042-2461	1
Capillary 3, pump outlet to system	G1361-67302	1
Bottle AMBER 2.0 I	9301-6341	1
Wrench open end 14-17 mm	8710-2435	1
Wrench open end 1/4-5/16"	8710-0510	2
Wrench open end 7/16-3/8″	8710-0972	1
Hex key 3 mm	8710-2411	1
Hex key 4 mm	87102392	1
Pair of tweezers	5022-2195	1
Priming Syringe (re-order no., pck. of 10)	5062-8534	1
Adapter for Priming Syringe	9301-1337	1
Tubing for Priming Syringe	G1361-87300	1
Spare bottle inlet filter (frit)	3150-0944	1
Spare frit adapter for 4.7 mm OD tubing	G1361-23205	1
Glass stop valve for stopped pumps	5042-6464	1
Spare filter cup	3150-0942	1
Spare SST frit 2 µm	5022-2192	1
CAN cable, 1 m	5181-1519	1
Union preparative	5022-2133	1
Sanding paper	no PN	2

 Table 8
 Basis Kit Contents G1361-68708 (shipped with the first pump of a system)

Gradient Kit Contents

Table 9Gradient Kit Contents G1361-68707 (shipped with every additional pump in a
gradient system)

Description	Part Number	Quantity
Bottle head assembly	G1361-60022	1
Tube seal wash	0890-1764	1
Waste tube	5042-2461	1
Bottle, clear 2.0 l	9301-6342	1
Capillary 5, pump A to T-union	G1361-67304	1
Capillary 6, T-union to inlet of mixer	G1361-67305	1
Female-T-union	0100-1016	1
Mixer	79835-87330	1
Capillary 7, pump B to T-union	G1361-67306	1
Spare bottle inlet filter (frit)	3150-0944	1
Spare frit adapter for 4.7 mm OD tubing	G1361-23205	1
Glass stop valve for stopped pumps	5042-6464	1
Spare filter cup	3150-0942	1
Spare SST frit 2 µm	5022-2192	1
CAN cable, 0.5 m	5181-1516	1

3

Optimizing the Stack Configuration

If your preparative pump is part of a complete Agilent 1260 Infinity system, you can ensure optimum performance and minimum delay volume by installing the following configuration.

• Figure 5 on page 34 and Figure 6 on page 35 show the configuration recommended for the pump in a UV based system.

Preparative System

NOTE For information about connecting an LC-MSD or a None-1260 Infinity detector to the system, please refer to the "User's Guide for Purification / High Throughput System", PN G2262-90010 or to the "Installation Note for the Mass Based Fraction Collection Kit".

NOTE

If a G1330B ALS thermostat is part of the system it must always be installed underneath the Autosampler.

3 Installing the Pump

Installing the Preparative Pump

Installing the Preparative Pump

Parts required	#	Part number	Description		
	1	G1361A	Pump		
	1		Power cord, for other cables see text below and Cable Overview in the Service Manual		
	1		Control Software (ChemStation, EZChrom, OpenLab, etc.) and/or		
		G4208A or G1323B	a handheld controller (Instant Pilot)		
Preparations		Locate bench spa Provide power co Unpack the pump	ace. Innections. D.		
WARNING	Instrument is partially energized when switched off				
	The power supply still uses some power, even if the power switch on the front panel is turned off.				
	ightarrow To disconnect the module from line, unplug the power cord.				
WARNING	Us	e of unsupplied	d cables		
	Us ele	ing cables not ectronic compo	supplied by Agilent lechnologies can lead to damage of the nents or personal injury.		

→ Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.
CAUTION	"Defective on arrival" problems If there are signs of damage, please do not attempt to install the module. Inspection by		
	Agnetic is required to evaluate in the institutient is in good condition of damaged. \rightarrow Notify your Agilent sales and service office about the damage		
	 → An Agilent service representative will inspect the instrument at your site and initiate appropriate actions. 		
	 Place the module on the bench in a horizontal position. Ensure the power switch on the front of the preparative pump is OFF (switch stands out). At the rear of the preparative pump move the security lever to its maximum right position. 		
Status lamp			
Power switch			
Serial number			

Figure 7 Front View of the Preparative Pump

Installing the Preparative Pump

- 4 Connect the power cable to the power connector at the rear of the module (see Figure 8 on page 38).
- 5 If required, connect additional interface and control cables to the preparative pump (Figure 9 on page 38). See also "Connecting Modules and Control Software" on page 40.

NOTE

The CAN bus is a serial bus with high-speed data transfer. The two connectors for the CAN bus are used for internal Agilent 1260 Infinity module data transfer and synchronization.

The REMOTE connector may be used in combination with other analytical instruments from Agilent Technologies if you want to use features such as common shut down, prepare, and so on.

The RS-232 connector may be used to control the preparative pump from a computer through an RS-232 connection, using appropriate software. This connector needs to be activated by the 8-bit configuration switch module in the upper right corner of the rear of the pump. The software needs the appropriate drivers to support this communication. See your software documentation for further information.

The power input socket accepts a line voltage of 100 - 240 Volts AC ± 10 % with a line frequency of 50 - 60 Hz. max. power consumption is 250 VA (Volt-Amps). There is no voltage selector on your preparative pump because the power supply has wide-ranging capability. There are no externally accessible fuses. The security lever at the power input socket prevents that the preparative pump cover is taken OFF when line power is still connected.

The interface (BCD) board slot is used for external contacts, BCD output and for LAN communication.

The CAN-DC-out provides 24 Volts DC power for external CAN devices like a switch valve. Max. permanent power consumption is 100 mA/channel or 2 A for 2 sec.

Connecting Modules and Control Software

Connecting Modules and Control Software

WARNING

Use of unsupplied cables

Using cables not supplied by Agilent Technologies can lead to damage of the electronic components or personal injury.

→ Never use cables other than the ones supplied by Agilent Technologies to ensure proper functionality and compliance with safety or EMC regulations.

Connecting Agilent 1260 Infinity modules

- 1 Place the individual modules in a stack configuration as shown in Figure 5 on page 34.
- **2** Ensure the power switches on the front of the modules are OFF (switches stand out).
- **3** Plug a CAN cable into the CAN connector at the rear of the respective module (except vacuum degasser).
- 4 Connect the CAN cable to the CAN connector of the next module, see Figure 6 on page 35.
- **5** Press in the power switches to turn on the modules.

Connecting control software control module

	1 Ensure the power switches on the front of the modules in the stack are OFF (switches stand out).
	2 Plug a GPIB cable into the GPIB connector at one of the modules, preferably at the detector (MUST for the DAD).
	3 Connect the GPIB cable to the Agilent control software in use.
	4 Plug a CAN cable into the CAN connector of the control module.
ΙΟΤΕ	Do not connect the Agilent control software or the control module with the vacuum degasser.
	5 Connect the CAN cable to the CAN connector of one of the modules.6 Press in the power switches to turn on the modules.
IOTE	The Agilent control software (e.g. ChemStation, EZChrom, OL, etc.) can be also be connected to the system through a LAN cable, which requires the installation of a LAN-board. For more information about connecting the control module or Agilent control software refer to the respective user manual. For connecting the Agilent 1260 Infinity equipment to non-Agilent 1260 Infinity equipment, see "Introduction to the Preparative Pump" on page 8.

Flow Connections for a Single (Isocratic) Preparative Pump

Flow Connections for a Single (Isocratic) Preparative Pump

Tools required	Wrench 1/4 - 5/16 inch for capillary connections		
Parts required	#	Part number	Description
			Other modules
	1	G1361-68708	Parts from basis kit (see Table 8 on page 32)
Preparations	Pu	mp is installed in	the HPLC system
WARNING	W	hen opening c	apillary or tube fittings solvents may leak out.
	The handling of toxic and hazardous solvents and reagents can hold health risks.		
	Please observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the solvent vendor, especially when toxic or hazardous solvents are used.		

WARNING Danger of Explosion

Pumping solvents at high flow rates generally results in electrostatic charging of the solvents, which may result in the potential ignition of flammable vapors or solvents.

- → To avoid electrostatic discharge, never use the pump without grounded metal solvent bottles.
- → Do not use metal bottles without appropriate grounding!

Flow Connections for a Single (Isocratic) Preparative Pump

1 Remove the front cover by pressing the snap fasteners on both sides.

Figure 10 Removing the Front Cover

- **2** Place the solvent cabinet on top of the module.
- **3** Place the bottle into the solvent cabinet and place a bottle head assembly into the bottle. *Ground the solvent bottle!*
- **4** Connect the solvent tubes from the bottle head assemblies to the inlet adapters of the pump. Fix the tubes in the clips of solvent cabinet and preparative pump.
- **5** By holding a piece of sanding paper around the waste tubing connect it to the electromagnetic purge valve (EMPV) and place it into your waste system.
- **6** If the preparative pump is not part of an Agilent 1260 Infinity system stack or placed on the bottom of a stack, connect the corrugated waste tube to the waste outlet of the pump leak handling system.
- NOTE

In order to guarantee an error-free handling of any leakage that may occur in the system, all modules of a stack must be thoroughly aligned on top of each other. Outstanding knobs at the rear of the top covers of the modules and holes as counterparts at the rear of the bottom covers of the modules will help to align the instruments nicely on top of each other by making them slide into the correct position. This will then allow any possible spills to be routed safely from one instrument to the next one with the help of the built in leak drainage system. (Each module has a funnel to catch drops coming from the above instrument, from there spills a lead through a waste drain tube into the leak pan and out from there through an outlet on to the next module).

Flow Connections for a Single (Isocratic) Preparative Pump

- 7 Connect the Outlet Capillary (G1361-67302) to the electromagnetic purge valve (EMPV) and make the necessary connections the other side of the capillary (normally a capillary to an injector or injection valve).
- 8 Install the seal wash tubings, as shown in Figure 11 on page 44. You need a tubing from your seal wash solvent bottle to the seal wash pump, one from there to the pump head and one from the pump head to waste.
- **9** Install the front cover.
- **10** Press in the power switch to turn ON the preparative pump.

Flow Connections for a Dual (Binary Gradient) Preparative Pump

Tools required	Wrench 1/4 - 5/16 inch for capillary connections		
Parts required	#	Part number	Description
			Other modules
	1	G1361-68708	Parts from basis kit (see Table 8 on page 32)
	1	G1361-68707	Parts from gradient kit (see Table 9 on page 33)
Preparations	•	Pumps are insta	lled in the HPLC system
WARNING	w	hen opening c	apillary or tube fittings solvents may leak out.
	Th	e handling of t	toxic and hazardous solvents and reagents can hold health risks.
	→	Please observ and protective	re appropriate safety procedures (for example, goggles, safety gloves e clothing) as described in the material handling and safety data sheet

Danger of Explosion

used.

WARNING

Pumping solvents at high flow rates generally results in electrostatic charging of the solvents, which may result in the potential ignition of flammable vapors or solvents.

supplied by the solvent vendor, especially when toxic or hazardous solvents are

- → To avoid electrostatic discharge, never use the pump without grounded metal solvent bottles.
- → Do not use metal bottles without appropriate grounding!

3

Flow Connections for a Dual (Binary Gradient) Preparative Pump

1 Remove the front covers of both pumps by pressing the snap fasteners on both sides.

Figure 12 Removing the Front Cover

- **2** Place the solvent cabinet on top of the module.
- **3** Place the bottles into the solvent cabinet and place a bottle head assembly into each bottle. *Ground the solvent bottles!*
- **4** Connect the solvent tubes from the bottle head assemblies to the inlet adapters of the pumps. Fix the tubes in the clips of solvent cabinet and preparative pumps.
- **5** By holding a piece of sanding paper around the waste tubing connect it to the electromagnetic purge valve (EMPV) of each pump and place it into your waste system.
- **6** If one of the preparative pumps is placed on the bottom of a stack, connect the corrugated waste tube to the waste outlet of the pump leak handling system.
- **NOTE** In order to guarantee an error-free handling of any leakage that may occur in the system, all modules of a stack must be thoroughly aligned on top of each other. Outstanding knobs at the rear of the top covers of the modules and holes as counterparts at the rear of the bottom covers of the modules will help to align the instruments nicely on top of each other by making them slide into the correct position. This will then allow any possible spills to be routed safely from one instrument to the next one with the help of the built in leak drainage system. (Each module has a funnel to catch drops coming from the above instrument, from there spills a lead through a waste drain tube into the leak pan and out from there through an outlet on to the next module).

- 7 Connect the long capillary (300 mm, G1361-67306) to the electromagnetic purge valve (EMPV) of the upper pump and connect the female T-piece to the other end of the capillary.
- **8** Connect the medium length capillary (140 mm, G1361-67304) to the electromagnetic purge valve (EMPV) of the lower pump and connect the other end of the capillary to the female T-piece.
- **9** Install the mixer (79835-87330) in the clips on the front panel of the bottom pump.
- **10** Connect the capillary (G1361-67305) from the outlet of the female T-piece to the mixer.
- **11** Install the outlet capillary (G1361-67302) to the mixer and make the necessary connections the other side of the capillary (normally a capillary to an injector or injection valve).
- **12** Install the seal wash tubings, as shown in Figure 13 on page 48. You need for each of the pumps a tubing from your seal wash solvent bottle to the seal wash pump, one from there to the pump head and one from the pump head to waste.
- **13** Install the front cover.

3

Flow Connections for a Dual (Binary Gradient) Preparative Pump

Figure 13 Flow connections to the preparative pump

Get the System Ready for the First Analysis

When you are using the system for the first time it is recommended to prime it to remove all the air and the possible contamination introduced in the flow path during the installation.

Priming your preparative LC system with the pump

NOTE

The pump should never be used for priming empty tubings (never let the pump run dry). Use a syringe to draw enough solvent for completely filling the tubings to the pump inlet before continuing to prime with the pump.

WARNING

When opening capillary or tube fittings solvents may leak out.

The handling of toxic and hazardous solvents and reagents can hold health risks.

- → Please observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the solvent vendor, especially when toxic or hazardous solvents are used.
- 1 Set the flow rate to 5 ml/min and pump for 5 minutes with an open EMPV to prime your new tubings and capillaries and to remove potential air bubbles or contamination from the flow path.
- **2** Check your system for leak tightness with the help of the built in pressure test (see Pressure Test) ("Prep Pump Pressure Test Description" on page 94).
- **3** Refer to "Optimizing Performance" on page 65 for optimizing your pump's performance.
- **4** Before starting an analysis pump until you receive a stable pressure signal from your pump and until your detector baseline has stabilized (normally no more than five minutes). Low %-ripple is a vital sign for a smoothly operating pump and a stable system.

Get the System Ready for the First Analysis

5 When the pumping system has been turned OFF for a certain time (for example, overnight) repeat Step 3 (step 4 on page 49).

Activity		Solvent	Comments	
 After When rever phase 	an installation n switching between se phase and normal e (both times)	Isopropanol	Best solvent to flush air out of the system	
• After	an installation	Ethanol or Methanol	Alternative to Isopropanol (second choice) if no Isopropanol is available	
 To cle using After 	ean the system when J buffers a solvent change	Bidistilled water	Best solvent to re-dissolve salts	
 After norm 	the installation of al phase solvents	Hexane + 5% Isopropanol	Good wetting properties	

 Table 10
 Choice of Priming Solvents for Different Purposes

Using the Preparative Pump

Hints for Successful Use of the Preparative Pump 52
Solvent Information 53
Prevent Blocking of Solvent Filters 54
Algae Growth in HPLC Systems 55
How to Prevent and/or Reduce the Algae Problem 56
Setting Up the Pump 57
Setting up the Preparative Pump (Agilent ChemStation) 57

4 Using the Preparative Pump

Hints for Successful Use of the Preparative Pump

Hints for Successful Use of the Preparative Pump

- Flush the pump extensively, when changing to a new solvent.
- The system pressure must be higher than 20 bar at the pump outlet for optimum performance of the pump.
- Place the solvent cabinet with the solvent bottles always on top of the preparative pump (or at a higher level).
- Prevent blocking of solvent inlet filters (never use the pump without solvent inlet filters). Growth of algae should be avoided (see "Prevent Blocking of Solvent Filters" on page 54).
- Regularly clean the filter cup and the filter frit installed in the multi assembly. A back pressure greater than 10 bar, when pumping pure HPLC grade water at a flow rate of 50 ml/min while the EMPV is open indicates that one of the two filters is blocked or that the EMPV does not switch (open) properly. Make sure to follow the correct procedures for cleaning filters (see "Simple Repairs" on page 114) and the EMPV (see "Prep Pump EMPV Cleaning Description" on page 103). Always clean the pump's filters, after exchanging seals.
- Confirm that the pump and the rest of the system are completely leak tight by performing the built in Leak-test (see "Prep Pump Leak Test Description" on page 98) and Pressure-test (see "Prep Pump Pressure Test Description" on page 94), regularly.
- When using buffer solutions, flush the system with plenty of water to remove all buffer solution from the entire system before switching it OFF or before changing to an organic solvent.
- Always use the seal wash function.
- Check the pump seals. Scratched plungers will lead to micro leaks and will decrease the lifetime of the seal.plungers for scratches when changing the piston.
- For the generation of gradients in systems with multiple pump setups make sure that none of the pumps delivers less than a minimum flow rate of 5 ml/min at any time during the gradient run, in order to achieve best performance.

Solvent Information

Always filter solvents through 0.4 μ m filters, small particles can permanently block the capillaries and valves. Avoid the use of the following steel-corrosive solvents:

- Solutions of alkali halides and their respective acids (for example, lithium iodide, potassium chloride, and so on).
- High concentrations of inorganic acids like sulfuric and nitric acid, especially at higher temperatures (replace, if your chromatography method allows, by phosphoric acid or phosphate buffer which are less corrosive against stainless steel).
- Halogenated solvents or mixtures which form radicals and/or acids, for example:

2CHCl₃ + O₂ \rightarrow 2COCl₂ + 2HCl

This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol.

- Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, di-isopropylether). Such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides.
- Solvents containing strong complexing agents (e.g. EDTA).
- Mixtures of carbon tetrachloride with 2-propanol or THF dissolve stainless steel.

Prevent Blocking of Solvent Filters

Contaminated solvents or algae growth in the solvent bottle will reduce the lifetime of the solvent filter and will influence the performance of the module. This is especially true for aqueous solvents or phosphate buffers (pH 4 to 7). The following suggestions will prolong lifetime of the solvent filter and will maintain the performance of the module.

- Use a sterile, if possible amber, solvent bottle to slow down algae growth.
- Filter solvents through filters or membranes that remove algae.
- Exchange solvents every two days or refilter.
- If the application permits add 0.0001-0.001M sodium azide to the solvent.
- Place a layer of argon on top of your solvent.
- Avoid exposure of the solvent bottle to direct sunlight.
- Filter HPLC grade (dry) Acetonitrile before use. The dryer the Acetornitrile, the stronger the tendency to form polymers and therefore block the system. Refilter at least every two days.

NOTE

Never use the system without solvent filter installed.

Algae Growth in HPLC Systems

The presence of algae in HPLC systems can cause a variety of problems that may be incorrectly diagnosed as instrument or application problems. Algae grow in aqueous media, preferably in a pH range of 4-8. Their growth is accelerated by buffers, for example phosphate or acetate. Since algae grow through photosynthesis, light will also stimulate their growth. Even in distilled water small-sized algae grow after some time.

Instrumental Problems Associated With Algae

Algae deposit and grow everywhere within the HPLC system causing:

- Deposits on ball valves, inlet or outlet, resulting in unstable flow or total failure of the pump.
- Small pore solvent inlet filters to plug, resulting in unstable flow or total failure of the pump.
- Small pore high pressure solvent filters, usually placed before the injector to plug resulting in high system pressure.
- Column filters to plug giving high system pressure.
- Flow cell windows of detectors to become dirty resulting in higher noise levels (since the detector is the last module in the flow path, this problem is less common).

Symptoms Observed with the Agilent 1260 Infinity HPLC

In contrast to the HP 1090 and HP 1050 Series HPLC systems which use helium degassing, algae have a better chance to grow in systems such as the Agilent 1260 Infinity Series where helium is not used for degassing (most algae need oxygen and light for growth).

The presence of algae in the Agilent 1260 Infinity Series can cause the following to occur:

- Short lifetime of solvent filters (bottle head assembly). A blocked solvent filter in the bottle, especially when only partly blocked, is more difficult to identify and may show up as gradient performance problems, intermittent pressure fluctuations etc.
- Algae growth may also be the possible source for failures of the ball valves and other components in the flow path.

How to Prevent and/or Reduce the Algae Problem

- Always use freshly prepared solvents, especially use demineralized water which was filtered through about 0.2 μm filters.
- Never leave mobile phase in the instrument for several days without flow.
- Always discard "old" mobile phase.
- Use the amber solvent bottle (part number 9301-1450) supplied with the instrument for your aqueous mobile phase.
- If possible add a few mg/l sodium azide or a few percent organic solvent to the aqueous mobile phase.

Setting Up the Pump

Setting up the Preparative Pump (Agilent ChemStation)

The Agilent 1260 Infinity Preparative Pump can be operated as Isocratic Pump or can be combined with an additional pump to form a gradient system. Details for both pump configurations are explained in "Flow Connections for a Single (Isocratic) Preparative Pump" on page 42 for the isocratic pump and in "Flow Connections for a Dual (Binary Gradient) Preparative Pump" on page 45 for the gradient pump.

If the Agilent ChemStation software is started, all pumps that are connected to the LC system are recognized and can be added to the list of configured modules (see Figure 14 on page 57). If two pumps are configured, they are treated as preparative gradient pump. The first (upper) pump in the configuration will deliver solvent A and the second (lower) pump will deliver solvent B.

Figure 14 List of Configured Modules

The parameters for setting up the preparative pump can be accessed through the instrument menu or by clicking on the pump icon in the system diagram (see Figure 15 on page 58).

Figure 15 System Diagram

The Setup dialog box depends on the configuration of the pump. In Figure 16 on page 58 you see the dialog box for the isocratic pump and in Figure 17 on page 59 you see the interface for the gradient pump.

Set up Pump 1 : Instrument 1		×
Control Flow: 50.00 StopTime: 360.00 PostTime: Off	Pressure Limits Max: 400 bar Min: 0 bar	Purge C enabled C disabled purgetime 0.00 min
Solvent A 100.0 % [H20(65%)/ACN Timetable	(35%)	
Time Flow	• Max. Press.	Insert Append Cut Copy Paste Display: Timetable
OK	Cancel	Help

Figure 16 Setup dialog box (isocratic pump)

4 **Using the Preparative Pump Setting Up the Pump**

Set up Gradient : Instrument	1	X
Control	Pressure Limits	Purge (Solvent A)
Flow: 50.00 ml/min	Max:	C enabled 💿 disabled
StopTime: 30.00 + min	Min:	purgetime 0.00 min
PostTime: Off 📑 min	0 bar	Note: Don't forget to set up purging for solvent B!
Solvent A	Solvent	B
80.0 % Water	20 %	S Acetonitrile
_ Timetable		
Time %	B Flow Max Pre	22
1 0.00 20.	0	Insert
2 2.00 20.	0	Append
3 20.00 85.	0	
4 30.00 85.	0	Cut
		Сору
		Paste
		Display:
		Timetable 💌
OK	Cancel	Help

Figure 17 Setup dialog box (gradient pump)

In these dialog boxes you can specify the following parameters:

Flow: Flow rate delivered by the pump. For gradient systems the flow parameter defines the combined flow delivered by the system on channel A and B. The maximum settable flow is 100 ml/min. For best performance a flow above 5 ml/min should be chosen. The pump can be operated at lower flow rates. However a slightly higher pressure ripple will be observed. In addition the system pressure should always be kept above 20 bar.

Stop Time: The Stop Time defines the end of your analysis run. After the stop time all gradients are stopped and the pump settings return to the initial values. Typically, the Stop Time of the pump specifies the Stop Time for all other modules in the LC system.

Post Time: During the Post Time the instrument stays in the Not Ready state and delays the start of the next analysis. The Post Time allows the column to equilibrate after a gradient run.

Max Pressure: The pump shuts down when exceeding the maximum pressure limit to protect the system or the column against overpressure. The Preparative Pump can operate up to 400 bar over the entire flow range. The limit has to be changed, if columns or other components with lower pressure limits are part of the LC system.

Min. Pressure: The pump shuts down, if the pressure is below this limit for several seconds.

Purge (Solvent A): If the purge function is enabled, the purge valve (EMPV) will open for the specified time before each analysis. In this dialog box, you can only control the automated purge for pump A. If you are using a gradient system, choose Purge B to specify and enable the purge procedure on channel B (see Figure 18 on page 60).

Purge B : Instrument 1	×
Purge (Solvent B)	
🔿 enabled 💿 disabled	
purgetime 0.00 min	
OK Cancel Help	

Figure 18 Purge Dialog Box

Solvent A: This text field allows you to write down a brief description of solvent A.

Solvent B: This text field allows you to write down a brief description of solvent B on gradient systems. In addition, you can specify the initial proportion of solvent B in %. This composition is valid as soon as the pump is switched on, before the run and after the Stop Time. During the run the composition (gradient) can be specified with the timetable.

Timetable: With the timetable you can specify changes of the composition (%B), the flow and the maximum pressure limit during the run. It is used to define solvent gradients. The composition %B is only available on gradient systems.

Flow Ramp and Compressibility can be specified in the Auxiliary dialog box (see Figure 19 on page 61).

Flow Ramp: This is the rate for turning the flow up and down, when the pump is switched on or off. The default setting (800 ml/min/min) protects the column against sudden pressure peaks and drops.

Compressibility: The compressibility of the solvent has to be specified in this field. The value will be used for the compressibility compensation to optimize the performance of the pump. For more details read the chapter "How to Optimize the Compressibility Compensation Setting" on page 67.

Auxiliary A : Instrument 1 (DE10200112)	×
Flow Ramp	_
800.000 ml/min per minute	
Compressibility	
75 ×10 ⁻⁶ /bar	
OK Cancel Help	

Figure 19 Auxiliary Dialog Box

The Auxiliary dialog box is also available for channel B on gradient pump systems.

The Control dialog box (Figure 20 on page 62) allows you to switch the pump on an off.

Purge: In this field you can open and close the automated purge valve, or you can specify a time for how long the purge valve will be open.

Error Method: By setting an Error Method you can define a pump particular method that is run, if an instrument error is detected. It is typically used to shut down the pump in a controlled manner. Use the Setup Pump dialog box (Figure 16 on page 58 or Figure 17 on page 59) to define a suitable error method. Then select Take Current Method and click OK. The current method is immediately copied to the pump and stored as error method and executed in case of an instrument error.

Seal Wash Pump: The settings for seal wash pump can be controlled in this section. The seal wash can be switched off or a single wash can be started for a user-specified time. In addition, you can choose to turn the seal wash on periodically for a user-defined on-time. The on-time must be between 0.1 min and 70% of the entire period.

Running the seal wash periodically will reduce the ware of the pump seals and increase the maintenance interval of your pump. For more details read the chapter "How to Configure the Seal Wash Function" on page 66.

Control A : Instr	ument 1 (DE102	00112)	×
Pump O On O Off	Purge	• Off	r method
– Seal Wash Pu	imp		
O Off			
⊂ Single V	/ash Duration	1.0 min	
Periodic	Period	1.0 min	0.2 min ON time
- Automatic Tur	n On	8/10/2007	<m d="" yyyy=""> <hh:mm:ss></hh:mm:ss></m>
ОК		Cancel	Help

Figure 20 Control dialog box

The Control dialog box is also available for channel B on gradient pump systems.

To prevent the pump from running dry you can specify the fillings of your solvent reservoir in the Solvent Bottle Filling dialog box (Figure 21 on page 63). This dialog box can be opened through Instrument > More Preparative pump > Bottle Filling... or by clicking on the bottle icon in the graphical user interface (Figure 14 on page 57).

Actual Volume: Set the actual volume after refilling the solvent bottle. When turning on the pump, the current filling will be calculated based on the flow rate and the run-time of the pump.

Total Volume: This value is used to calculate the % filling of the bottle for the display in the system diagram.

You can select not to start the run, if the current fill level is below a user-defined value, and to turn-off the pump before it is running out off solvent.

Solvent Bottle Filling A : Instrument 1 (DE10200112)
Actual Volume: Total Volume:
A: 0.95 liter 2.00 liter
✓ Prevent analysis if level falls below 0.100 liter ✓ Turn pump off if running out of solvent
OK Cancel Help

Figure 21 Solvent Bottle Filling dialog box

The Solvent Bottle Filling dialog box is also available for channel B on gradient pump systems.

4 Using the Preparative Pump

Setting Up the Pump

Optimizing Performance

How to Configure the Seal Wash Function 66 Water or Aqueous Buffer Solutions 66 Organic Solvents 66

How to Optimize the Compressibility Compensation Setting 67

How to Configure the Seal Wash Function

Always use the seal wash function which is delivered with your pump.

NOTE

The seal wash function cannot be operated permanently (danger of overheating). Switch on the seal wash pump in regular intervals (normally for 30 s every 30 minutes) for a certain length of time. It is however important to keep the back of the seals wet with the help of the seal wash function.

Water or Aqueous Buffer Solutions

We recommend a composition of 10% Isopropanol in HPLC grade water for water or aqueous buffer solutions. With buffer solutions, the seal wash pump should be configured such, that it is turned on for a duration of 30 s every 5 minutes (with a maximum of 30% cycle time). Shorten the intervals between the pump turn-ons for highly concentrated buffer solutions (> 0.1 M buffer solutions).

Organic Solvents

For all organic non buffered solutions, we recommend to use the same solvent for the seal wash as the one that is currently pumped by your preparative pump. In this case, the seal wash pump has to be operated in large intervals, only. Basically it is enough to keep the back of seals wet with the help of the seal wash option.

NOTE

Beware that the seal wash tubing is made of silicon. Never use any solvents for the seal wash, that are not compatible with silicone.

How to Optimize the Compressibility Compensation Setting

The compressibility compensation default settings are 75×10^{-6} /bar (best for most aqueous solutions). Under normal conditions the default settings reduce the pressure pulsation to values (below 2 % of system pressure for a complete system with a preparative scale sized column installed) that will be sufficient for most applications. If the compressibility values for the solvents used differ from the default settings, it is recommended to change the compressibility values for various solvents described in Table 11 on page 68. If the solvent in use is not listed in the compressibility table, when using premixed solvents and if the default settings are not sufficient for your application the following procedure can be used to optimize the compressibility settings:

NOTE

Use the preparative pump with a flow rate of at least 20 ml/min.

- **1** Start the preparative pump with the adequate flow rate. The system pressure should be between 50 and 150 bar
- **2** Before starting the optimization procedure, the flow must be stable. Before starting the procedure, check the tightness of the system with the help of the built in pressure test (see "Prep Pump Pressure Test Description" on page 94).
- **3** Verify the tightness of the pump itself (piston/seal combinations, valves, filters fittings, etc.) with the help of the built in Leak Test (see "Prep Pump Leak Test Description" on page 98).
- **4** Your pump must be connected to a Agilent ChemStation or handheld controller, the pressure and %-ripple can be monitored with one of these instruments.
- **5** Starting with a compressibility setting of 50×10^{-6} /bar increase the value in steps of 10. The compressibility compensation setting that generates the smallest pressure ripple is the optimum value for your solvent composition.
- **6** Repeat step 1 on page 67 through step 5 on page 67 for each preparative pump in a system with a multiple pump setup.

5

5 Optimizing Performance

How to Optimize the Compressibility Compensation Setting

Solvent (pure)	Compressibility (10-6/bar)
Acetone	126
Acetonitrile	115
Benzene	95
Carbon tetrachloride	110
Chloroform	100
Cyclohexane	118
Ethanol	114
Ethyl acetate	104
Heptane	120
Hexane	150
lsobutanol	100
lsopropanol	100
Methanol	120
1-Propanol	100
Toluene	87
THF	95
Water	46

Table 11 Solvent Compressibility

6

Troubleshooting and Diagnostics

Agilent Lab Advisor software 70 Overview of the Pump's Indicators and Test Functions 71 Status Indicators 72 Power Supply Indicator 72 Instrument Status Indicator 73 User Interfaces 74 Error Messages 75 Pressure Test 94 Prep Pump Pressure Test Description 94 Positioning the Blank Nut 95 Running the Pressure Test 96 Evaluating the Results 97 Leak Test 98 Prep Pump Leak Test Description 98 Running the Leak Test 99 **Evaluating the Results** 100 EMPV Cleaning 103 Prep Pump EMPV Cleaning Description 103 **Running the Cleaning Procedure** 104

6 Troubleshooting and Diagnostics Agilent Lab Advisor software

Agilent Lab Advisor software

The Agilent Lab Advisor software is a standalone product that can be used with or without data system. Agilent Lab Advisor software helps to manage the lab for high quality chromatographic results and can monitor in real time a single Agilent LC or all the Agilent GCs and LCs configured on the lab intranet.

Agilent Lab Advisor software provides diagnostic capabilities for all Agilent 1260 Infinity HPLC modules. This includes tests and calibrations procedures as well as the different injector steps to perform all the maintenance routines.

A Agilent Lab Advisor software also allows users to monitor the status of their LC instruments. The Early Maintenance Feedback (EMF) feature helps to carry out preventive maintenance. In addition, users can generate a status report for each individual LC instrument. The tests and diagnostic features as provided by the Agilent Lab Advisor software may differ from the descriptions in this manual. For details refer to the Agilent Lab Advisor software help files.

This manual provides lists with the names of

, Not Ready messages, and other common issues.

Overview of the Pump's Indicators and Test Functions

This chapter describes the instrument's built in troubleshooting and test functions.

Status Indicators

The preparative pump is provided with two status indicators which indicate the operational state (prerun, run, and error states) of the preparative pump. The lower left indicates the power supply status, the upper right indicates the preparative pump status. The status indicators provide a quick visual check of the operation of the preparative pump (see "Status Indicators" on page 72).

Error Messages

In the event of an electronic, mechanical or hydraulic failure, the preparative pump generates an error message in the user interface. For details on error messages and error handling, please refer to the Agilent Lab Monitor & Diagnostic Software.

Pressure Test

The pressure test is a quick test designed to determine the pressure tightness of the system. After exchanging flow path components (e.g., pump seals or injection seal), use this test to verify the system is pressure tight up to 400 bar (see "Prep Pump Pressure Test Description" on page 94).

Leak Test

The leak test is a diagnostic test designed to determine the pressure tightness of the preparative pump. When a problem with the preparative pump is suspected, use this test to help troubleshoot the preparative pump and its pumping performance (see "Prep Pump Leak Test Description" on page 98).

6

6 Troubleshooting and Diagnostics Status Indicators

Status Indicators

Two status indicators are located on the front of the preparative pump. The lower left one indicates the power supply status, the upper right one indicates the instrument status.

Power Supply Indicator

The power supply indicator is integrated into the main power switch. When the indicator is illuminated (*green*) the power is *ON*.

NOTE

The power switch stays pressed in and a green indicator lamp in the power switch is ON when the preparative pump is turned ON. When the line power switch stands out and the green light is OFF, the preparative pump is turned OFF.
Instrument Status Indicator

The instrument status indicator indicates one of four possible instrument conditions:

- When the status indicator is *OFF* (and power switch light is ON), the module is in *aprerun* condition, and is ready to begin an analysis.
- A *green* status indicator, indicates the module is performing an analysis (*run* mode).
- A *yellow* indicator indicates a *not-ready* condition. The module is in a not-ready state when it is waiting for a specific condition to be reached or completed (for example, immediately after changing a setpoint), or while a self-test procedure is running.
- An *error* condition is indicated when the status indicator is *red*. An error condition indicates the module has detected an internal problem which affects correct operation of the module. Usually, an error condition requires attention (for example, leak, defective internal components). An error condition always interrupts the analysis.
- A *flashing yellow* status indicator indicates that the module is in its resident mode. Call your local service provider for assistance upon observing this error condition.
- A *flashing red* status indicator indicates a severe error during the *startup* procedure of the module. Call your local service provider for assistance upon observing this error condition.

User Interfaces

Depending on the User Interface, the available test vary. Some descriptions are only available in the Service Manual.

Test	ChemStation	Instant Pilot G4208A	Agilent Lab Monitoring & Diagnostic Software
Pressure Test	Yes	No	Yes
Leak Test	Yes	No	Yes
EMPV Cleaning	Yes	No	Yes

 Table 12
 Test Functions available vs. User Interface

Error Messages

Error messages are displayed in the user interface when an electronic, mechanical, or hydraulic (flow path) failure occurs which requires attention before the analysis can be continued (for example, repair, frit exchange or exchange of consumables required). In the event of such a failure, the red status indicator at the front of the module is switched on, and an entry is written into the instrument logbook.

Timeout

The timeout threshold was exceeded.

Probable cause

- 1 The analysis was completed successfully, and the timeout function switched off the module as requested.
- 2 A not-ready condition was present during a sequence or multiple-injection run for a period longer than the timeout threshold.

Suggested actions

Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.

Check the logbook for the occurrence and source of a not-ready condition. Restart the analysis where required.

Shut-Down

An external instrument has generated a shut-down signal on the remote line.

The module continually monitors the remote input connectors for status signals. A LOW signal input on pin 4 of the remote connector generates the error message.

Probable cause		Suggested actions
1	Leak detected in another module with a CAN connection to the system.	Fix the leak in the external instrument before restarting the module.
2	Leak detected in an external instrument with a remote connection to the system.	Fix the leak in the external instrument before restarting the module.
3	Shut-down in an external instrument with a remote connection to the system.	Check external instruments for a shut-down condition.

Remote Timeout

A not-ready condition is still present on the remote input.

When an analysis is started, the system expects all not-ready conditions (e.g. a not-ready condition during detector balance) to switch to run conditions within one minute of starting the analysis. If a not-ready condition is still present on the remote line after one minute the error message is generated.

Probable cause		Suggested actions	
1	Not-ready condition in one of the instruments connected to the remote line.	Ensure the instrument showing the not-ready condition is installed correctly, and is set up correctly for analysis.	
2	Defective remote cable.	Exchange the remote cable.	
3	Defective components in the instrument showing the not-ready condition.	Check the instrument for defects (refer to the instrument's reference documentation).	

Synchronization Lost

Prohable cause

During an analysis, the internal synchronization or communication between one or more of the modules in the system has failed.

The system processors continually monitor the system configuration. If one or more of the modules is no longer recognized as being connected to the system, the error message is generated.

Suggested actions

1	CAN cable disconnected.	Ensure all the CAN cables are co correctly.	onnected
		Ensure all CAN cables are instal	led correctly.
2	Defective CAN cable.	Exchange the CAN cable.	
3	Defective main board in a different module.	Switch off the system. Restart the s letermine which module or module ecognized by the system.	ystem, and s are not

Leak

A leak was detected in the module.

The signals from the two temperature sensors (leak sensor and board-mounted temperature-compensation sensor) are used by the leak algorithm to determine whether a leak is present. When a leak occurs, the leak sensor is cooled by the solvent. This changes the resistance of the leak sensor which is sensed by the leak-sensor circuit on the main board.

Probable cause		Suggested actions	
1	Loose fittings.	Ensure all fittings are tight.	
2	Broken capillary.	Exchange defective capillaries.	
3	Loose or leaking active inlet valve, outlet ball valve, or EMPV.	Ensure pump components are seated correctly. If there are still signs of a leak, exchange the appropriate seal (active inlet valve, outlet ball valve, or EMPV).	
4	Defective pump seals.	Exchange the pump seals.	

Leak Sensor Open

The leak sensor in the module has failed (open circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current falls outside the lower limit, the error message is generated.

Probable cause		Suggested actions
1	Leak sensor not connected to the main board.	Ensure the leak sensor is connected correctly.
2	Defective leak sensor.	Exchange the leak sensor.

Leak Sensor Short

The leak sensor in the module has failed (short circuit).

The current through the leak sensor is dependent on temperature. A leak is detected when solvent cools the leak sensor, causing the leak-sensor current to change within defined limits. If the current increases above the upper limit, the error message is generated.

Probable cause		Suggested actions	
1	Defective leak sensor.	Exchange the leak sensor.	
2	Leak sensor incorrectly routed, being pinched by a metal component.	Exchange the leak sensor	

Compensation Sensor Open

The ambient-compensation sensor (NTC) on the main board in the module has failed (open circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor increases above the upper limit, the error message is generated.

Pr	obable cause	Suggested actions	
1	Defective main board.	Exchange the main board.	

Compensation Sensor Short

The ambient-compensation sensor (NTC) on the main board in the module has failed (short circuit).

The resistance across the temperature compensation sensor (NTC) on the main board is dependent on ambient temperature. The change in resistance is used by the leak circuit to compensate for ambient temperature changes. If the resistance across the sensor falls below the lower limit, the error message is generated.

Probable cause		Suggested actions
1	Defective main board.	Exchange the main board.

Fan Failed

The cooling fan in the module has failed.

The hall sensor on the fan shaft is used by the main board to monitor the fan speed. If the fan speed falls below a certain limit for a certain length of time, the error message is generated.

Probable cause		Suggested actions	
1	Fan cable disconnected.	Ensure the fan is connected correctly.	
2	Defective fan.	Exchange fan.	
3	Defective main board.	Exchange the main board.	
4	Improperly positioned cables or wires obstructing fan blades.	Ensure the fan is not mechanically blocked.	

Open Cover (Safety)

Do not remove instrument covers when operating. Before the instrument is switched ON, all protective earth terminals, extension cords, auto-transformers, and devices connected to it must be connected to a protective earth via a ground socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in serious personal injury. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any intended operation.

WARNING

Open main cover

The following procedures require opening the main cover of the instrument.

- → Always ensure the instrument is disconnected from the line power when the main cover is removed.
- The security lever at the power input socket prevents that the instrument cover is taken off when line power is still connected.

WARNING

Module is partially energized when switched off, as long as the power cord is plugged in.

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened and the module is connected to power.

- → Make sure that it is always possible to access the power plug.
- → Remove the power cable from the instrument before opening the cover.
- → Do not connect the power cable to the Instrument while the covers are removed.

Open Cover

The top foam has been removed.

The sensor on the main board detects when the top foam is in place. If the foam is removed, the pump is turned OFF within 4s for safety reasons, and the error message is generated. If the pump is started without cover, this error message is also generated and the pump is not turned on.

Probable cause		Suggested actions
1	The top foam was removed during operation or pump started without cover.	Reinstall the top foam.
2	Foam not activating the sensor.	Replace the top foam.
3	Sensor defective.	Exchange the main board.
4	Rear of the module is exposed to strong direct sunlight.	Ensure that the rear of module is not directly exposed to strong sunlight.

Pressure Above Upper Limit

The system pressure has exceeded the upper pressure limit. This error condition automatically results in the opening of the purge valve.

Probable cause		Suggested actions	
1	Upper pressure limit set too low.	Ensure the upper pressure limit is set to a value suitable for the analysis.	
2	Blockage in the flowpath (after the pressure sensor).	Check for blockage in the flowpath.	
3	Defective pressure sensor.	Exchange the Multi Assembly.	
4	Defective main board.	Exchange the main board.	

Pressure Below Lower Limit

The system pressure has fallen below the lower pressure limit.

Probable cause		Suggested actions
1	Lower pressure limit set too high.	Ensure the lower pressure limit is set to a value suitable for the analysis.
2	Air bubbles in the mobile phase.	Ensure bubble free flow. Purge the preparative pump.
3	Leak.	 Inspect the pump head, capillaries and fittings for signs of a leak.
		 Purge the module. Run a pressure test to determine whether the seals or other module components are defective.
4	Defective pressure sensor.	Exchange the Multi Assembly.
5	Defective main board.	Exchange the main board.

Pressure Sensor not Connected

The pressure readings, read by the pump ADC (analog-digital converter), are missing.

The ADC reads the pressure readings from the pressure sensor every 1 ms. If the readings are missing for longer than 10 seconds, the error message is generated.

Probable cause		Suggested actions	
1	Pressure sensor not connected (should be connected to P29 on the PPM board) or connected to the seal wash cable connector (P23).	Ensure the pressure sensor connector is clean, connected and seated correctly.	
2	Defective pressure sensor.	Exchange multi assembly.	
3	Defective PPM board.	Exchange the PPM board.	

Wrong Data from Pressure Sensor

The pressure sensor delivers readings within the range of -5 to -25 bar.

Probable cause		Suggested actions
1	Defective pressure sensor.	Exchange the pressure sensor.
2	Defective PPM board.	Exchange the PPM board.

Motor Drive Temperature too High

The temperature of the motor-drive circuits is too high.

The processor continually monitors the temperature of the drive circuits on the PPM board. If excessive current is being drawn for long periods, the temperature of the circuits increase. If the temperature exceeds the upper limit of 95 $^{\circ}$ C, the error message is generated.

Probable cause		Suggested actions	
1	High friction (partial mechanical blockage) in the pump drive assembly.	Remove the pump head assembly. Ensure there is no mechanical blockage of the pump head assembly or pump drive assembly.	
2	Partial blockage of the flowpath in front of the pressure sensor.	 Ensure the outlet valve is not blocked. Ensure the capillaries and frits between the pump head and pressure sensor (at the rear of the multi assembly) are free from blockage. Clean the filters in the multi assembly. 	
3	Defective drive assembly.	Exchange defective drive assembly.	
4	Defective PPM board.	Exchange the PPM board.	

Motor Drive Fault

The motor drive chip has issued a fault signal. The current drawn by the pump motor exceeded the maximum limit or under voltage lockout.

Blockages in the flowpath are usually detected by the pressure sensor, which result in the preparative pump switching OFF when the upper pressure limit is exceeded. If a blockage occurs before the pressure sensor (i.e. the pressure increase cannot be detected by the pressure sensor), the preparative pump will continue to pump. As pressure increases, the pump drive draws more current. When the current reaches the maximum limit, the preparative pump is switched OFF, and the error message is generated.

Probable cause		Suggested actions
1	Flow path blockage in front of the pressure sensor.	Ensure the capillaries and frits between the pump head and pressure sensor (at the rear of the multi assembly) are free from blockage. Clean the filters in the multi assembly.
2	Blocked outlet ball valve.	Exchange the outlet ball valve.
3	High friction (partial mechanical blockage) in the drive assembly.	Remove the pump head assembly. Ensure there is no mechanical blockage of the pump head assembly or drive assembly.
4	Defective drive assembly.	Exchange the drive assembly.
5	Defective PPM board.	Exchange the PPM board.

Motor Maximum Power Fault

The motor control has determined that the set maximum for the motor power was exceeded for longer than 1 second. To protect the circuitry from damage this error event is issued in this case.

Blockages in the flowpath are usually detected by the pressure sensor in the multi assembly, which results in the preparative pump switching OFF when the upper pressure limit is exceeded. If a blockage occurs before the pressure sensor (i.e. the pressure increase cannot be detected by the pressure sensor), the preparative pump will continue to pump. As pressure increases, the pump drive draws more current. When the current reaches the maximum limit, the preparative pump is switched OFF, and the error message is generated.

Probable cause		Suggested actions
1	Flow path blockage in front of the pressure sensor.	Ensure the capillaries and frits between the pump head and pressure sensor (at the rear of the multi assembly) are free from blockage. Clean the filters in the multi assembly.
2	Blocked outlet ball valve.	Exchange the outlet ball valve.
3	High friction (partial mechanical blockage) in the drive assembly.	Remove the pump head assembly. Ensure there is no mechanical blockage of the pump head assembly or drive assembly.
4	Defective drive assembly.	Exchange the drive assembly.
5	Defective PPM board.	Exchange the PPM board.

Motor Direction

The motor control has determined that the motor turns in opposite direction.

Probable cause		Suggested actions	
1	Cables connected in wrong orientation after a repair.	Ensure the cables are correctly connected (on the main board and at the pump drive) and reconnect with new orientation, if necessary.	

Pump Off While Analysis

This error message is generated, if the pump was turned OFF, during an analysis (Power OFF or pump in a Not-Ready condition).

Probable cause

Suggested actions

- 1 Power OFF or pump in a Not-Ready condition.
- Turn ON the Pump.
- Eliminate the cause of the Not-Ready condition.

Index Missing

The pump motion control expects one index signal for every turn of the drive wheel. The error message is generated, if this signal is not received within one complete turn of the drive wheel.

Probable cause		Suggested actions
1	Defective or disconnected index cable.	Ensure the connector connected and seated correctly.
2	Defective Pump drive defective index board on pump drive.	Exchange the pump drive assembly.
3	Defective main board.	Exchange the main board.

Position Error

The motion control of the pump drive could not reach the desired condition within a certain time frame. The deviation from the desired position exceeded the error limit.

Probable cause		Suggested actions	
1	Blocked flow path.	Ensure that there is no blockage in the flow path before the pressure sensor.	
2	Mechanical blockage of the pump drive assembly.	Exchange the pump drive assembly.	

Spurious Index

The pump motion control expects one (and only one) index signal for every turn of the drive wheel. This error message is generated, if this signal is received more often than within one complete turn of the drive wheel.

Probable cause		Suggested actions
1	Missing reflections to light switch because of contamination on drive wheel.	Ensure the drive wheel is clean.
2	Defective Pump drive.	Exchange the pump drive assembly.
3	Defective main board.	Exchange the main board.

Encoder not Connected

There is an encoder wheel mounted to the shaft of the pump motor, that gives pulses to the motion control according to the rotation of the shaft. The error message is generated if the short bridge on the connector is not sensed.

Probable cause		Suggested actions	
1	Defective or disconnected pump encoder connector or cable.	Ensure the connector is clean, and seated correctly.	
2	Defective main board.	Exchange main board.	

Purge Valve (EMPV) Fuse Blown

The electronic fuse has detected that the current through the purge valve was too high.

Probable cause		Suggested actions
1	Defective purge valve.	Exchange the drive of the EMPV.
2	Defective PPM board.	Exchange the PPM board.

Electro-Magnetic-Proportional-Valve (EMPV) Missing

The EMPV in the preparative pump is missing or defective.

Probable cause		Suggested actions
1	Disconnected or defective cable.	Ensure the connection cable is seated correctly.
2	Defective purge valve.	Exchange the drive of the EMPV.
3	Defective PPM board.	Exchange PPM board.

No Pump Head

The pump-head RF-tag in the preparative pump was not found.

Pr	obable cause	Suggested actions	
1	Pump head not installed correctly (screws not secured, or pump head not seated correctly).	Install the pump head correctly. Ensure nothing (e.g. capillary) is trapped between the pump head and body.	
2	RF-tag on pump-head missing or defective.	Install missing or replace defective RF-tag.	
3	Wrong pump-head connected.	Install the original Agilent pump-head with RF-tag.	
4	Defective PPM board.	Exchange PPM board.	

Wait for Volume Timed Out

The wait time limit until a given volume has been pumped, has been exceeded.

Pr	obable cause	Suggested actions
1	Wrong limit set for the time limit.	Set limit accordingly.
2	Flow setting too low.	Set flow accordingly.

Wait for Pressure Timed Out

The limit, for waiting until a given pressure is reached, has been exceeded.

Probable cause		Suggested actions
1	Wrong limit set for the time limit.	Set limit accordingly.
2	Leak.	Check for leaks with the help of the built in pressure or leak test and correct them, where necessary.

Composition Cluster Partner Lost

Communication to a composition cluster partner was interrupted.

In a gradient system, two (or more) isocratic preparative pumps can be linked together in a cluster acting as one gradient pump. The error message is generated, if the communication between the partners of a cluster is interrupted.

Probable cause		Suggested actions	
1	Composition cluster partner was turned OFF.	Turn ON composition cluster partner.	
2	CAN-cable to composition cluster partner disconnected.	Reconnect or replace CAN-cable.	
3	Defective CAN-bus.	Replace PPM main board.	

Solvent Counter Zero

The volume counter for the bottle filling reached zero.

Probable cause		Suggested actions
1	Value for bottle filling set incorrectly.	Reset bottle filling to the correct value.
2	Solvent bottle empty.	Refill solvent bottle.

No Motor Motion

No motor rotation feedback.

Probable cause		Suggested actions
1	Defective or disconnected index cable.	Ensure the connector connected and seated correctly.
2	Encoder cable not connected at the encoder.	Ensure the encoder cable is connected and seated correctly at the encoder.
3	Motor defective or not connected.	Exchange the pump drive assembly.
4	Defective main board.	Exchange the main board.

Seal Wash Current Low

The current sensing of the seal wash motor was lower than expected.

Probable cause		Suggested actions	
1	Defective or disconnected seal wash pump motor.	Ensure the cable is correctly connected.Exchange the seal wash pump motor.	
2	Defective main board.	Exchange main board.	

6 Troubleshooting and Diagnostics

Error Messages

Seal Wash (Safety)

CAUTION

Pressure sensor incorrectly plugged into the main board port

You risk permanent damage of the pressure sensor, if the seal wash pump is turned ON while the pressure sensor is incorrectly connected to the main board port, dedicated for the seal wash pump. This requires exchange of complete multi assembly.

- Never turn on the seal wash pump, while the pressure sensor is connected to the main board port.
- → Make sure the seal wash cable and the pressure sensor cable are plugged in the correct positions before turning ON the seal wash pump.

Seal Wash

This error message is generated, if the pressure sensor is incorectly plugged into the connector on the main board, that should hold the seal wash motor cable.

Probable cause

Suggested actions

1 Pressure sensor and seal wash pump connector were connected to the wrong position on the main board (identical connectors allow to plug into the wrong positions by mistake). Switch the connectors of the seal wash pump cable and the pressure sensor to meet the correct positions (P23 for seal wash cable, P29 for the pressure sensor cable from the multi assembly).

Wait for Encoder Position Timed Out

Encoder position was not reached within specified time.

Probable cause		Suggested actions
1 Flow too low		Recalculate flow or wait time, to allow to reach encoder position before encoder position time-out.
2 Pump OFF.		Turn ON pump.

24V Supply for External Devices Low

Voltage sensing of the 24 Volts CAN outlet shows low voltage, probably fuse has blown.

Probable cause		Suggested actions	
1	Excessive current has been drawn by an external device connected to the external 24 CAN-DC out.	Ensure, that any device, connected to the external 24 CAN-DC out, does not draw more than 100 mA as a permanent current or a maximum of 2 A for no longer than 2 seconds. The error condition will be reset automatically, when the excessive current is not drawn from the external 24 CAN-DC out port any more.	
2	Defective main board.	Exchange main board.	

Agilent 1260 Infinity Preparative Pump User Manual

Pressure Test

Prep Pump Pressure Test Description

The pressure test is a quick, built-in test designed to demonstrate the pressure-tightness of the system. The test involves monitoring the flow rate, required to keep a constant pressure of 350 bar, as the preparative pump runs through a predefined pumping sequence. The resulting flow rate provides information about the pressure tightness of the system.

Step 1

The test begins with an automated flushing of the pump at a flow rate of 25 ml/min with an open EMPV.

Step 2

The EMPV is closed and next, piston A begins pumping solvent with a flow rate of 0.5 ml/min until reaching a pressure of 150 bar. At this point, the pump delivers at a flow rate of 0.2 ml/min until reaching a pressure of 250 bar. The pump then delivers at a flow rate of 0.1 ml/min until reaching a pressure of 345 bar, then switches into its "Keep pressure mode".

NOTE

To test the pressure tightness of all individual components in the flow path of the pump itself use the leak test, see "Prep Pump Leak Test Description" on page 98.

Step 3

When the system pressure reaches 350 bar, the preparative pump switches to its "Keep-pressure-mode". The flow rate to compensate for leaks should from this point onwards be no more than 10 μ l/minute.

Positioning the Blank Nut

If a specific component is suspected of causing a system leak, place the blank nut immediately before the suspected component, then run the pressure test again. If the test passes, the defective component is located after the blank nut. Confirm the diagnosis by placing the blank nut immediately after the suspected component. The diagnosis is confirmed if the test fails.

Running the Pressure Test

When	If problems with small leaks are suspected After maintenance of flow-path components (e.g. pump seals, injection seal) to prove pressure tightness up to 350 bar.	
Tools required	• ¼-inch" wrench	
Parts required	# Part numberDescription101080-83202Blank nut500 ml Isopropanol	
Preparations	 Thoroughly flush the entire system with Isopropanol and remove all contaminations and potential air bubbles, release the pressure in the system and position the blank nut 	
NOTE	Make absolutely sure that all parts of the flow path that are part of the test are very thoroughly flushed with IPA before starting to pressurize the system! Any trace of other solvents or the smallest air bubble inside the flow path definitely will cause the test to fail!	
	 Select the pressure test from the test selection menu. Start the test and follow the instructions. 	
NOTE	Finishing the test will release the pressure in the system.	
	3 Remove the blanking nut after finishing the test and reconnect all capillaries.	
NOTE	For detailed instructions refer to the Agilent LMD Tool.	

Evaluating the Results

The sum of all leaks between the pump and the blank nut will be indicated by flow rate of > 10 μ l/minute to keep the pressure constant. Note that small leaks may cause the test to fail, but solvent may not be seen leaking from a module.

- **NOTE** Please notice the difference between an *error* in the test and a *failure* of the test! An *error* means that during the operation of the test there was an abnormal termination. If a test *failed*, this means that the results of the test where not within the specified limits.
 - **NOTE** Do not overtighten fittings! After the first major increase of resistance when tightening a previously loose fitting, the fitting should not be tightened any further than an additional 1/8 to 1/4 wrench turn.
- **NOTE** Often it is only a damaged blank nut itself (poorly shaped from overtightening) that causes a failure of the test. Before investigating on any other possible sources of failure make sure that the blank nut you are using is in good condition and properly tightened!

Large internal leaks at the EMPV can easily be identified by observing a flow out through the waste tubing of the EMPV, while the EMPV should be closed.

Leak Test

Prep Pump Leak Test Description

The leak test is a quick, built-in test designed to demonstrate the pressure-tightness of the pump. The test involves monitoring the pump drive steps needed to build up a pressure of 350 bar and the flow rate, required to keep a constant pressure of 350 bar, as the preparative pump runs through a predefined pumping sequence. The resulting flow rate provides information about the pressure tightness of the pump. Each step is separately performed and evaluated separately for piston 1 and piston 2.

Step 1

The test begins with an automated flushing of the pump at a flow rate of 25 ml/min with an open EMPV.

Step 2

The EMPV is closed and next, piston 1 begins pumping solvent with a flow rate of 2 ml/min until reaching a pressure of 150 bar, then the pump delivers at a flow rate of 0.2 ml/min until reaching a pressure of 250 bar, then the pump delivers at a flow rate of 0.1 ml/min until reaching a pressure of 345 bar, then the pump switches into its "Keep pressure mode".

Step 3

The flow rate to compensate for leaks should from this point onwards be no more than 10 $\mu l/minute.$

Step 4

Steps 2 and 3 are automatically repeated for piston 2.

Running the Leak Test

When	 When problems with leaks are suspected, or after maintenance of flow-path components (e.g., pump seals, filters, EMPV or capillaries) to prove pressure tightness up to 350 bar 		
Tools required	• ¼ inch" wrench.		
Parts required	# Part number Description		
	1 01080-83202 Blank nut		
	500 ml Isopropanol		
Preparations	• Thoroughly flush the pump with isopropanol and remove all contaminations and potential air bubbles, release the pressure in the system and position the blank nut,		
NOTE	Make absolutely sure that all parts of the flow path that are part of the test are very thoroughly flushed with IPA before starting to pressurize the pump! Any trace of other solvents or the smallest air bubble inside the flow path definitely will cause the test to fail!		
NOTE	It is recommended to run the EMPV cleaning procedure (see "Prep Pump EMPV Cleaning Description" on page 103) prior to running the Leak test, to remove any potential deposits from the EMPV valve.		
	1 Select the leak test from the test selection menu.		
	2 Start the test and follow the instructions.		
NOTE	Detailed instructions are provided in the LMD Tool.		

NOTE

"Evaluating the Results" on page 100 describes the evaluation and interpretation of the leak test results.

Evaluating the Results

Defective or leaky components in the pump head lead to changes in the leak-test pressure plot. Typical failure modes are described below.

NOTE

Please notice the difference between an *error* in the test and a *failure* of the test! An *error* means that during the operation of the test there was an abnormal termination. If a test *failed*, this means that the results of the test were not within the specified limits.

NOTE

Often it is only the damaged blank nut itself (poorly shaped from overtightening) that causes a failure of the test. Before investigating on any other possible sources of failure make sure that the blank nut you are using is in good condition and properly tightened!

Error Limits Exceeded for One or Both of the Encoder Values and One or Both of the Maximum allowed Flow Rates in the Constant Pressure Mode

Probable causeSuggested actions1 Air bubble.Flush pump thoroughly.2 Loose or leaky fittings.Ensure all fittings are tight, or exchange
capillary.3 Large leaks (visible) at the pump seals.Exchange the pump seals.4 Large leaks (visible) at valve, outlet valve,
filters, multi assembly, capillaries or EMPV.Ensure the leaky components are installed
tightly. Exchange the component if required. Run

the EMPV cleaning procedure.

Maximum Allowed Flow Rate Exceeded for Both Pistons (1 and 2)

Suggested actions

Probable cause

1	Wrong solvent.	Use Isopropyl alcohol only.	
2	Loose or leaky fittings.	Ensure all fittings are tight, or exchange capillary.	
3	Contaminated EMPV.	Run the EMPV cleaning procedure.	
4	Loose pump head screws.	Ensure the pump head screws are tight.	
5	Large leaks (visible) at the pump inlet/outlet valves.	Tighten or exchange the pump inlet/outlet valves.	
6	Large leaks (visible) at filters, multi assembly, capillaries or EMPV.	Ensure the leaky components are installed tightly. Exchange the component if required. Run the EMPV cleaning procedure.	
7	Leaky pressure sensor.	Exchange the multi assembly.	
8	Leaking seal or scratched plungers of channel 1 or channel 2.	Exchange the pump seals in both channels. Check the plungers for scratches. Exchange if scratched.	

Maximum Allowed Flow Rate exceeded for Piston 1

Probable cause

Suggested actions

1	Externally leaking inlet or outlet valve in channel 1.	Ensure the valves are installed correctly. Tighten the valves. Clean or replace the inlet valve in channel 1.	
2	Internally leaking inlet valve in channel 1 (back flow).		
3	Internally leaking outlet valve in channel 2 (back flow).	Clean or replace the outlet valve in channel 2.	
4	Leaking seal or scratched plunger in channel 1.	Exchange the pump seals in channel 1. Check the plunger for scratches. Exchange if scratched.	
5	Loose or leaky fitting or capillary or fitting in channel 1.	Tighten fitting or replace capillary if necessary in channel 1.	

Maximum Allowed Flow Rate Exceeded for Piston 2

Probable cause		Suggested actions
1	Externally leaking inlet or outlet valve in channel 2.	Ensure the valves are installed correctly. Tighten the valves.
2	Internally leaking inlet valve in channel 2 (back flow).	Clean or replace the inlet valve in channel 2.
3	Internally leaking outlet valve in channel 1 (back flow).	Clean or replace the outlet valve in channel 1.
4	Leaking seal or scratched plunger in channel 2.	Exchange the pump seals in channel 2. Check the plunger for scratches. Exchange if scratched.
5	Loose or leaky fitting or capillary or fitting in channel 2.	Tighten fitting or replace capillary if necessary in channel 2.

EMPV Cleaning

Prep Pump EMPV Cleaning Description

Depending on the application, particles can sometimes be collected in the EMPV valve. This fast cleaning routine is designed to remove such particle deposits. The routine should always be performed when the EMPV is suspected of being leaky or contaminated with particles.

NOTE

Large internal leaks at the EMPV can easily be identified by observing a flow out through the waste tubing of the EMPV, while the EMPV should be closed.

The EMPV outlet is plugged with a blank nut (01080-83202). After a short flushing routine the EMPV is closed and the pressure is increased to approximately 350 bar. Then the EMPV is opened and the pressure is released very quickly. The procedure is repeated 5 times in a sequence.

Running the Cleaning Procedure

When	•	When the EMPV is suspected of being leaky, or contaminated with particles
Tools required	•	Wrench7/16 inch.
Parts required	# 1	Part numberDescription01080-83202Blank nut
Preparations	1 2	Plug the pump outlet with a blank nut (01080-83202) at EMPV outlet Select EMPV Cleaning from the test selection menu. Start the procedure and follow the instructions.
NOTE	Detailed instructions are provided in the Lab Advisor tool.	

Run a leak test (see "Prep Pump Leak Test Description" on page 98 after having performed the cleaning procedure, to ensure tightness of the EMPV.

NOTE

3 For better removal of any left-over particles, it will help to clean the ball of the valve with an additional procedure, if the previous step did not help: Using a 7/16" wrench remove deposits by turning the holding screw of the EMPV body back and forth about 1/4 wrench turn several times.

Figure 22 Removing Deposits from the EMPV with the Help of a Wrench:

- 4 Remove the blank nut.
- **5** Reconnect all capillaries.

6 **Troubleshooting and Diagnostics EMPV Cleaning**

Maintenance

Introduction to Maintenance and Repair 108 Simple Repairs 108 Warnings and Cautions 109 Cleaning the module 111 Overview of Maintenance and Repair 112 Simple Repairs 114 Checking and Cleaning the Solvent Inlet Filters 115 Exchanging the Inlet/Outlet Ball Valves 117 Exchanging the Filter Cup 120 Exchanging the Filter Frit 122 Exchanging the Seal Wash Pump Cartridge 125 Removing and Disassembling the Pump Head Assembly 126 Reassembling the Pump Head Assembly 129 Exchanging the Optional Interface Board 131 Replacing the Module's Firmware 132

Maintenance Introduction to Maintenance and Repair

7

Introduction to Maintenance and Repair

Simple Repairs

The module is designed for easy repair. The most frequent repairs such as plunger seal change and purge valve frit change can be done from the front of the module with the module in place in the system stack.

These repairs are described in "Simple Repairs" on page 114
7

Warnings and Cautions

WARNING

Module is partially energized when switched off, as long as the power cord is plugged in.

Repair work at the module can lead to personal injuries, e.g. shock hazard, when the cover is opened and the module is connected to power.

- → Make sure that it is always possible to access the power plug.
- → Remove the power cable from the instrument before opening the cover.
- → Do not connect the power cable to the Instrument while the covers are removed.

Sharp metal edges

Sharp-edged parts of the equipment may cause injuries.

To prevent personal injury, be careful when getting in contact with sharp metal areas.

WARNING

WARNING

When opening capillary or tube fittings solvents may leak out.

The handling of toxic and hazardous solvents and reagents can hold health risks.

→ Please observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the solvent vendor, especially when toxic or hazardous solvents are used.

CAUTION

Electronic boards and components are sensitive to electrostatic discharge (ESD).

ESD can damage electronic boards and components.

→ Be sure to hold the board by the edges and do not touch the electrical components. Always use an ESD protection (for example, an ESD wrist strap) when handlingelectronic boards and components.

7 Maintenance

Introduction to Maintenance and Repair

NOTE

The electronics of the preparative pump will not allow operation of the preparative pump when the top cover and the top foam are removed. A safety light switch ON the main board will inhibit the operation of the preparative pump. Always operate the preparative pump with the top foam and top covers in place.

7

Cleaning the module

The module case should be kept clean. Cleaning should be done with a soft cloth slightly dampened with water or a solution of water and mild detergent. Do not use an excessively damp cloth as liquid may drip into the module.

WARNING

Liquid dripping into the electronic compartment of your module. Liquid in the module electronics can cause shock hazard and damage the module.

- → Do not use an exessively damp cloth during cleaning.
- → Drain all solvent lines before opening any fittings.

7 Maintenance

Overview of Maintenance and Repair

Overview of Maintenance and Repair

Figure 23 on page 112 shows the main assemblies of the preparative pump. The pump heads and its parts do require normal maintenance (for example, seal exchange) and can be accessed from the front (simple repairs). Replacing internal parts will require to remove the module from its stack and to open the top cover.

Figure 23 Overview of Repair Procedures

- 11 Multi assembly with filters and pressure sensor (at the rear), see "Exchanging the Filter Cup" on page 120, "Exchanging the Filter Frit" on page 122
- 22 Leak sensor, see Exchanging the Leak Sensorin the Service Manual
- 33 Inlet valves, see "Removing an Inlet Ball Valve (Bottom of the Pump Head)" on page 117
- 44 Pump head, see "Removing and Disassembling the Pump Head Assembly" on page 126
- 55 Outlet valves, see "Removing an Outlet Ball Valve (Top of the Pump Head)" on page 118
- 66 Pump drive, see Exchanging a Pump Drive in the Service Manual
- 77 Power supply, see Exchanging a Power Supply in the Service Manual
- 88 PPM board, see Exchanging a PPM Board in the Service Manual
- 99 Fan, see Exchanging a Fan in the Service Manual
- 1010 Electromagnetic purge valve, EMPV, see Exchanging a EMPV in the Service Manual
- 1111 Seal wash pump, see "Exchanging the Seal Wash Pump Cartridge" on page 125

Simple Repairs

The procedures described in this section can be done with the preparative pump in place in the system stack.

 Table 13
 Simple Repair Procedures

Procedure	Symptom	Potential causes
"Removing an Inlet Ball Valve (Bottom of the Pump Head)" on page 117	If leaking or not opening/closing properly	External/internal leak. Pressure ripple unstable, run leak test for verification
"Exchanging the Filter Cup" on page 120	Excessive back pressure with open EMPV, unstable pressure	After replacing pump seals, contaminated filter
"Exchanging the Filter Frit" on page 122	Excessive back pressure with open EMPV, unstable pressure	After replacing filter cup, particles on filter frit
"Exchanging the Seal Wash Pump Cartridge" on page 125	Seal wash pump not delivering flow Seal wash pump leaking	If mechanically defect
"Removing and Disassembling the Pump Head Assembly" on page 126	Leaks, unstable flow or pressure	If seal life time is shorter than normally expected — check plungers for scratches while changing the seals
"Reassembling the Pump Head Assembly" on page 129	After pumphead repair	

Checking and Cleaning the Solvent Inlet Filters

NOTE

A blocked filter does not affect the pressure readings of the preparative pump. The pressure readings cannot be used to check whether the filter is blocked or not.

NOTE If the filter is in good condition the solvent will freely run out of the solvent tube (due to hydrostatic pressure). If the solvent filter is partly blocked only little solvent will drip out of the solvent tube.

WARNING

When opening capillary or tube fittings solvents may leak out.

The handling of toxic and hazardous solvents and reagents can hold health risks.

→ Please observe appropriate safety procedures (for example, goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet supplied by the solvent vendor, especially when toxic or hazardous solvents are used.

CAUTION

Small particles can permanently block the capillaries and valves of the module. Damage of the module.

- → Always filter solvents.
- → Never use the module without solvent inlet filter.

Simple Repairs

Cleaning the Solvent Filters

When	If solvent filter is blocked
Parts required	# Description
	Concentrated nitric acid (65%)
	Bidistilled water
	1 Beaker
Preparations	Remove the solvent inlet tube from the inlet valve of the pump and let the tube hang down
	1 Remove the blocked solvent filter from the bottle-head assembly and place it in a beaker with concentrated nitric acid (65%) for one hour.
	2 Thoroughly flush the filter with bidistilled water (remove all nitric acid, some columns can be damaged by nitric acid).
	3 Replace the filter.

Exchanging the Inlet/Outlet Ball Valves

Removing an Inlet Ball Valve (Bottom of the Pump Head)

When	 If internally / externally leaking (back flow) Wrench 17 mm Wrench 1/4 inch 	
Tools required		
Parts required	# Part number1 G1361-60012	Description Valve assembly
NOTE	The inlet valves do (see "Prep Pump L working properly.	o not necessarily have to be replaced in pairs. Use the built in Leak Test Leak Test Description" on page 98) to identify the valve, that is not

- **1** Disconnect the solvent inlet tube at the inlet valve. Beware of leaking solvents.
- **2** Using a 17-mm wrench loosen the inlet valve and remove the valve adapter, including the valve assembly from the pump head.

7 Maintenance

Simple Repairs

Removing an Outlet Ball Valve (Top of the Pump Head)

When	If internally / externally leaking (back flow)		
Tools required	 Wrench 17 mm Wrench 1/4 inch 		
Parts required	# Part number1 G1361-60012	Description Valve assembly	
NOTE	The outlet valves d (see "Prep Pump L working properly.	o not necessarily have to be replaced in pairs. Use the built in Leak Test eak Test Description" on page 98) to identify the valve, that is not	

- 1 Disconnect the solvent outlet capillary at the valve adapter, with a 1/4 inch wrench. Beware of leaking solvents.
- **2** Using a 17-mm wrench loosen the outlet valve adapter and remove the valve adapter from pump head.
- **3** Lift the valve adapter out of the housing in the pumphead.
- 4 With a pair of tweezers carefully remove valve assembly.

Replacing an Inlet/Outlet Valve

- 1 Before inserting the new valve assembly, clean the valve adapter by placing it into an ultrasonic bath, if it shows visible signs of contamination. Clean the valve housing in the pumphead by filling a syringe with alcohol and flushing the housing thoroughly.
- **2** Insert a new valve assembly into the valve adapter. The arrow on Figure 24 on page 117 indicates the flow direction. Make sure the valve assembly is fully inserted into the valve adapter.

NOTE

The side of the valve assembly that has the two holes must always face in flow direction!

- **3** Insert the valve adapter with the new valve assembly into the housing and screw tight.
- **4** Reconnect all capillaries and tubings.

NOTE Don't reverse inlet and outlet valve adapters. The outlet valve adapters have a smaller hole for fitting of the SST outlet capillary. The inlet adapters are designed for the finger tight fittings of the inlet tubing.

Exchanging the Filter Cup

When	 After the pump seals have been exchanged When the back pressure exceeds 10 bar pumping 50 ml/min of pure water with open purge valve. 	
Tools required	 Wrench 17 mm Wash bottle containing isopropanol 	
Parts required	# Part numberDescription13150-0942Filter cup	
NOTE	Whenever replacing the filters on the multi assembly is required because of a pump seal change or because excessive back pressure indicates the need for a replacement, make sure to replace the filter cup first and then the filter frit (see "Exchanging the Filter Frit" on page 122), after having pumped another 200 ml of solvent.	
NOTE	It is not possible to clean a contaminated filter cup in an ultrasonic bath because any contamination of the filter is normally permanent.	

- 1 Using a 17 mm wrench loosen filter screw on the multi assembly.
- **2** Carefully pull out filter screw and filter cup.

3 Remove the filter cup from the screw by holding the screw and filter and pulling them apart.

NOTE Generally, all components which are in direct contact with solvents should be handled wearing gloves.

- **4** Before reinserting the new filter screw into the multi assembly, wash the filter housing thoroughly with a wash bottle, containing Isopropanol, to remove any contamination.
- **5** Install a new filter into the filter screw.
- **6** Reinsert the filter and filter screw and turn until finger tight, then another 1/8 turn using a 17 mm wrench.

NOTE Do not overtighten the filter screw. Excessive force on the filter screw doesn't help in case of a leak.

7 Pump about 200 ml of solvent before replacing the filter frit installed at the multi assembly: the filter frit between the outlet of the multi assembly and the EMPV (see "Exchanging the Filter Frit" on page 122).

Exchanging the Filter Frit

NOTE

Whenever replacing the filters on the multi assembly is required because of a pump seal change or because excessive back pressure indicates the need for a replacement, make sure to replace the filter cup first (see "Exchanging the Filter Cup" on page 120) and then the filter frit, after having pumped another 200 ml of solvent.

Changing the Filter Frit

When	When the back pressure exceeds 10 bar pumping 50 ml/min of pure water with open pure After 200 ml solvent have been pumped through the pump after a filter cup exchange.		
Tools required	 Wrench 7/16 inch Wrench 1/4 inch Hex-key 4 mm Wash bottle containing Isopropanol 		
Parts required	# Part number	Description	
	1 5022-2192	Filter frit 2 µm	
	1 Using a 1/4 and EMPV.	inch wrench disconnect the capillary between multi assembly	

2 Insert a hex-key in to hole in the multi assembly. Hold the hex-key firmly and unscrew the locknut using the 7/16 inch wrench.

- **3** Pull out the filter holder and filter.
- **4** Flush the filter port and filter holder using a wash bottle containing isopropanol.

7 Maintenance Simple Repairs

5 Install a new filter frit into the filter holder with the collar of the filter frit facing towards the multi assembly. Reconnect the filter holder into multi-assembly. Finger tighten screw and then turn 1/8 turn using 7/16 inch wrench and hex-key.

6 Reconnect capillary between multi assembly and EMPV using a 1/4 inch wrench.

Exchanging the Seal Wash Pump Cartridge

Parts required	#

When

If mechanically defect

- # Part number Description1 5042-8507 Seal wash pump cartridge
- 1 Disconnect seal wash tubing at the connectors, and place the ends of each tubing at a level above seal wash bottle (to avoid leaking solvents).
- **2** By pressing the upper and lower clip remove the seal wash pump cartridge.
- 3 Replace the defective cassette and slide the new cassette on to the shaft pressing upper and lower clip. Push forward until the clips snap into place. The preferred orientation of the cartridge is as shown in picture below.
- **4** Reconnect seal wash tubing.

Figure 28 Seal Wash Pump Cartridge

Removing and Disassembling the Pump Head Assembly

When	When leaky or blocked
	For exchanging the seals
	For exchanging the plungers
Tools required	Screwdriver Pozidrive#1
	4-mm hexagonal key
	• 10-mm wrench
	• Toothpick
Preparations	Switch OFF preparative pump at power switch
	Remove the front cover to have access to the pump mechanics
	Seals should always be replaced as pairs (2x front seals + 2x back seals)!
NOTE	

Damage of the pump drive

Starting the pump when the pump head is removed may damage the pump drive.

→ Never start the pump when the pump head is removed.

7 Maintenance

Simple Repairs

 5 Remove secondary seals between the pumphead and the spring assembly, by using the plungers.

 Secondary seals

Reassembling the Pump Head Assembly

Tools required

- Screwdriver Pozidrive#1
- 4-mm hexagonal key
- 10-mm wrench

Preparations

Clean all parts before reassembly

7 Maintenance

Simple Repairs

Exchanging the Optional Interface Board

When	Board defective	
Parts required	 # Description 1 BCD (Interface) board, see "BCD / External Contact Board" on page 155 	
CAUTION	Electrostatic discharge at electronic boards and components	
	 → ??8 In order to prevent damage always use an ESD protection (for example, the ESD wrist strap from the accessory kit) when handling electronic boards and components. 	

- **1** Switch off the pump at the main power switch, unplug the pump from line power.
- **2** Disconnect cables from the interfaceboard connectors.
- **3** Loosen the screws. Slide out the interface board from the pump.
- 4 Install the new interface board. Secure screws.
- **5** Reconnect the cables to the board connector.

Figure 29 Exchanging the Interface Board

Replacing the Module's Firmware

When	 The installation of newer firmware might be necessary if a newer version solves problems of older versions or to keep all systems on the same (validated) revision.
	 The installation of older firmware might be necessary to keep all systems on the same (validated) revision or if a new module with newer firmware is added to a system or if third part control software requires a special version.
Tools required	 LAN/RS-232 Firmware Update Tool or Agilent Diagnostic Software Instant Pilot G4208A (only if supported by module)
Parts required	Description
	Firmware, tools and documentation from Agilent web site
Preparations	Read update documentation provided with the Firmware Update Tool.
	To upgrade/downgrade the module's firmware the following steps have to be performed:
	1 Download the required module firmware, the latest LAN/RS-232 FW Update Tool and the documentation from the Agilent web.
	 http://www.chem.agilent.com/scripts/cag_firmware.asp.
	2 Load the firmware into the module as described in the documentation.
NOTE	Due to a different hardware platform, there is no way to convert a G1314D VWD and the G1314E VWD SL Plus to a G1314A/B VWD or G1314C VWD SL.

Parts and Materials for Maintenance

Pump Housing and Main Assemblies134Pump-Head Assembly138Solvent Cabinet and Solvent Inlet Parts140Hydraulic Path142Preparative Pump Basis Kit145Preparative Pump Gradient Kit147

Pump Housing and Main Assemblies

ltem	Description	Part Number
1	Leak sensor	5061-3356
2	Multi assembly with filters and pressure sensor (at the rear) Filter cup 10 μm SST filter assembly — 2 μm	G1361-60005 3150-0942 5022-2192
3	Inlet valve, see "Removing an Inlet Ball Valve (Bottom of the Pump Head)" on page 117	
4	Pump head, see "Removing and Disassembling the Pump Head Assembly" on page 126	G1361-60004
5	Outlet valve, see "Removing an Outlet Ball Valve (Top of the Pump Head)" on page 118	
6	Cap, seal wash, see "Removing and Disassembling the Pump Head Assembly" on page 126	
7	Pump drive assembly	G1361-60001
8	Power supply, underneath the PPM board, main assembly only; for additional parts refer to the Repair Manual	0950-3907
9	Main Board PPM	G1361-66500
10	Fan assembly	3160-1016
11	Electromagnetic purge valve (EMPV)	G1361-60000
12	Cassette — seal wash pump Stepper motor — seal wash pump	5042-8507 5065-4409
13	Leak pan - pump	5042-8590

 Table 14
 Repair Parts — Pump Housing and Main Assemblies (Front View)

Figure 30 Overview of Main Assemblies (Front View)

8 Parts and Materials for Maintenance

Pump Housing and Main Assemblies

ltem	Description	Part Number
1	Power supply (behind rear panel)	0950-3907
2	Standoff — remote connector	1251-7788
3	Board cover	5001-3772
4	Screw	0515-0910
	Lock washer	2190-0409

 Table 15
 Repair Parts — Pump Housing and Main Assemblies (Rear View)

Figure 31 Overview of Main Assemblies (Rear View)

8 Parts and Materials for Maintenance Pump-Head Assembly

Pump-Head Assembly

ltem	Description	Part Number
	Complete assembly	G1361-60004
1	Screw M5, 55 mm lg	0515-4249
2	Pump head front (front and rear head sould be replaced at the same time, it necessary)	G1361-25200
3	Valve assembly for inlet and outlet	G1361-60012
4	Adapter for outlet valve	G1361-23202
5	Special screw M6	G1361-22401
6	Cap seal wash fittings	G1361-67307
7	Screw for plunger housing	5015-0048
8	Sapphire plunger	G1361-22402
9	Plunger housing	G1361-60007
10	Seal prep flange	5022-2188
11	Pump head rear (front and rear head sould be replaced at the same time, it necessary)	G1361-25201
12	0-ring	0905-1516
13	Adapter for inlet valve	G1361-23201

Table 16 Pump-Head Assembly

Parts and Materials for Maintenance 8 Pump-Head Assembly

Figure 32 Pump-Head Assembly

8 Parts and Materials for Maintenance

Solvent Cabinet and Solvent Inlet Parts

Solvent Cabinet and Solvent Inlet Parts

ltem	Description	Part Number
1	Solvent cabinet, including all plastic parts	5065-9981
2	Name plate, Agilent 1200	5042-8901
3	Front panel, solvent cabinet	5065-9990
4	Leak pan, solvent cabinet	5042-8907
5	Bottle-head assembly for Prep pump includes items 6, 7, 8, 9, and 10	G1361-60022
6	Y-fitting and tube pump	
7	Cap, bottle	
8	Bottle amber, 2 liter	9301-6341
8	Bottle clear, 2 liter	9301-6342
	Bottle clear, 2 liter, with second inlet	5065-4421
9	Frit adapter	G1361-23205
10	Solvent inlet filter	3150-0944
11	Prep. Pump SST inlet adapter for pressurized solvent supply. Allows connection of any 1/8" Swagelock-compatible capillary to the inlet of the prep. pump.	G1361-60008
12	HiFlow Solvent Inlet Filter Assembly, for high filtering capacity, includes tubing and connectors	5065-4500
13	Replacement HiFlow Solvent Inlet Filter, glass housing with filter	5065-9901

Table 17 Solvent Cabinet and Bottle-Head Assembly Parts

Parts and Materials for Maintenance 8

Solvent Cabinet and Solvent Inlet Parts

Hydraulic Path

ltem	Description	Part Number
1	Tubing from solvent bottle, see "Solvent Cabinet and Solvent Inlet Parts" on page 140)	G1361-60022
2, 3	Tube clip, Leak funnel	5042-6404, 5042-6405
4	Leak drainage, same as item 7 (re-order 5 m)	5062-2463
5	Prep Capillary 3 (basis kit), EMPV out to next module, SST 1/16" o.d., 0.6 mm i.d., 400 mm long	G1361-67302
5a	Prep Capillary 4, multi assembly to EMPV, SST 1/16" o.d., 0.5 mm i.d., 160 mm long	G1361-67303
6	Tubing PTFE 0.057" i.d., EMPV to waste (re-order 5 m)	5062-2461
7	Corrugated waste tube, 120 cm (re-order 5 m)	5062-2463
8	Tubing, Seal wash pump to pump head	0890-1764
9	Tubing, Seal wash solvent bottle to seal wash pump	0890-1764
	Tube adapter (for item 8 and 9)	5042-6422
10	Inlet ball valve, see "Pump-Head Assembly" on page 138	
11	Outlet ball valve, see "Pump-Head Assembly" on page 138	
12	Tubing, Seal wash to waste	0890-1764
13	Prep Capillary 1, Outlet valve 1 to multi assembly top, SST 1/16" o.d., 0.6 mm i.d., 173 mm long	G1361-67300
14	Prep Capillary 2, Outlet valve 2 to multi assembly bottom, SST 1/16" o.d., 0.6 mm i.d., 178 mm long	G1361-67301
15	Prep Capillary 5 (gradient kit), Union to EMPV2 SST 1/16" o.d., 0.6 mm i.d., 111 mm long	G1361-67304
16	Prep Capillary 6 (gradient kit), Union to mixer SST 1/16" o.d., 0.6 mm i.d., 40 mm long	G1361-67305

Table 18 Hydraulic Path

Table 18 H	ydraulic Path
------------	---------------

ltem	Description	Part Number
17	Prep Capillary 7 (gradient kit), EMPV1 to union SST 1/16" o.d., 0.6 mm i.d., 367 mm long	G1361-67306
18	Union (gradient kit)	0100-1016
	Fitting FRONT, Fitting BACK, Fitting 1/16", re-order 10/pk	5062-2418

8 Parts and Materials for Maintenance

Hydraulic Path

Gradient interconnection

Preparative Pump Basis Kit

This kit is part of the G1361A Preparative Pump.

Description	Part Number	Quantity
Bottle head assembly	G1361-60022	1
Tube seal wash, 2 m	0890-1764	1
Waste tube, reorder No.	5062-2461	1
Capillary 3, pump outlet to system	G1361-67302	1
Bottle AMBER 2.0 I	9301-6341	1
Wrench open end 14-17 mm	8710-2435	1
Wrench open end 1/4-5/16"	8710-0510	2
Wrench open end 7/16-3/8"	8710-0972	1
Hex key 3 mm	8710-2411	1
Hex key 4 mm	8710-2392	1
Pair of tweezers	5022-2195	1
Priming Syringe (re-order no., pck. of 10)	5062-8534	1
Adapter for Priming Syringe	9301-1337	1
Tubing for Priming Syringe	G1361-87300	1
Spare bottle inlet filter (frit)	3150-0944	1
Spare frit adapter for 4.7 mm OD tubing	G1361-23205	1
Glass stop valve for stopped pumps	5042-6464	1
Spare filter cup	3150-0942	1
Spare SST frit 2 µm	5022-2192	1
CAN cable, 1 m	5181-1519	1

 Table 19
 Basis Kit Contents G1361-68708 (shipped with the first pump of a system)

8 Parts and Materials for Maintenance

Preparative Pump Basis Kit

Description	Part Number	Quantity
Union preparative	5022-2133	1
Sanding paper	no PN	2

Table 19 Basis Kit Contents G1361-68708 (shipped with the first pump of a system)

Preparative Pump Gradient Kit

 Table 20
 Gradient Kit Contents G1361-68707 (shipped with every additional pump in a gradient system)

Description	Part Number	Quantity
Bottle head assembly	G1361-60022	1
Tube seal wash	0890-1764	1
Waste tube	5042-2461	1
Bottle, clear 2.0 l	9301-6342	1
Capillary 5, pump B to T-union	G1361-67304	1
Capillary 6, T-union to inlet of mixer	G1361-67305	1
Female-T-union	0100-1016	1
Mixer	79835-87330	1
Capillary 7, pump A to T-union	G1361-67306	1
Spare bottle inlet filter (frit)	3150-0944	1
Spare frit adapter for 4.7 mm OD tubing	G1361-23205	1
Glass stop valve for stopped pumps	5042-6464	1
Spare filter cup	3150-0942	1
Spare SST frit 2 µm	5022-2192	1
CAN cable, 0.5 m	5181-1516	1

8 Parts and Materials for Maintenance

Preparative Pump Gradient Kit

9 Configuring the Preparative Pump

Preparative Pump Main Board (PPM) 150 Block Diagrams 152 Optional Interface Boards 155 Interfaces 159 Analog Signal Output 159 GPIB Interface 159 CAN Interface 159 APG Remote Interface 160 RS-232C 162 Main Power Supply Assembly 164

Preparative Pump Main Board (PPM)

The board controls all information and activities of all assemblies within the preparative pump. The operator enters parameters, changes modes and controls the preparative pump through interfaces (CAN or RS-232C), connected to the user-interfaces. Figure 34 on page 152 and Figure 35 on page 153 show block diagrams of this board.

ASIC — Application-Specific Integrated Circuit

The application-specific integrated circuit (ASIC) includes all digital logic for the core processor functions and also for module-specific functions.

Motor Drive

The drive comprises motor control and motor amplifier.

Electromechanical Proportional Valve

The EMPV consists of an electro-magnetic solenoid, driven by a PWM (Pulse Width Modulator).

Pressure Converter

This block comprises a filter and amplifier for the pressure-sensor-signal, an A/D converter with integrated multiplexer.

Leak Converter

This block comprises a PTC for the leak identification and a NTC for the ambient temperature measurement. This assures that temperature changes are not identified as leak. A leak would cool down the PTC and its change in resistance results in a leak signal.

Fan Drive

The revolution of the fan is controlled by the main processor depending on the internal heat distribution in the preparative pump. The fan provides a PWM signal which is proportional to the revolution. This fan status signal is used for diagnostics.

Seal Wash Pump Drive

The drive comprises a current control and full bridge driver for the seal wash pump.

Pump head ID Module

The pump head ID Module is used to write pump head specific information onto a tag that is installed in the pump head.

Index Board

The Index board is used to sense the movement and positioning of the pump drive. It also comprises calibration information of the drive.

Electronic Fuses

The valve circuit is electronically fused on the board. Any error on the board or shortages of the valve will activate the electronic fuse that will switch OFF the supply voltage. This prevents the damage of components.

Onboard Battery

An onboard lithium battery buffers the electronic memories when the preparative pump is turned off.

For safety information on lithium batteries, see "Lithium Batteries Information" on page 173.

9 Configuring the Preparative Pump

Preparative Pump Main Board (PPM)

Block Diagrams

Figure 35 Block Diagram Pump Controller Board

9 Configuring the Preparative Pump

Preparative Pump Main Board (PPM)

Figure 36 Interconnection Diagram CSM Board

Optional Interface Boards

BCD / External Contact Board

The Agilent 1260 Infinity modules have one optional board slot that allows to add an interface board to the modules. Some modules do not have this interface slot. Refer to "Interfaces" on page 16 for details.

 Table 21
 Optional Interface Boards

Description	Part Number
BCD Board	G1351-68701
Fuse 250 mA (four are on the board)	2110-0004

The BCD board provides a BCD output for the bottle number of the Agilent 1260 Infinity autosampler and four external contacts. The external contact closure contacts are relay contacts. The maximum settings are: 30 V (AC/DC); 250 mA (fused).

Optional Interface Boards

There are general purpose cables available to connect the BCD output, see BCD Cables in the Service Manual and the external outputs, see External Contact Cable in the Service Manual to external devices.

Pin	Signal name	BCD digit
1	BCD 5	20
2	BCD 7	80
3	BCD 6	40
4	BCD 4	10
5	BCD 0	1
6	BCD 3	8
7	BCD 2	4
8	BCD 1	2
9	Digital ground	
10	BCD 11	800
11	BCD 10	400
12	BCD 9	200
13	BCD 8	100
15	+5V	Low

Table 22Detailed connector layout (1200)

LAN Communication Interface Board

The Agilent 1260 Infinity modules have one optional board slot that allows to add an interface board to the modules. Some modules do not have this interface slot. Refer to "Interfaces" on page 16 for details.

Description	Part Number
LAN Communication Interface Board	G1369A G1369-60001

NOTE

One board is required per Agilent 1200 stack. It is recommended to add the LAN board to the detector with highest data rate.

NOTE

For the configuration of the G1369A Lan Communication Interface card refer to its documenation.

The following cards can be used with the Agilent 1260 Infinity modules.

lable 23	LAN Boards
----------	------------

Туре	Vendor	Supported networks
G1369A G1369-60001	Agilent Technologies	Fast Ethernet, Ethernet/802.3, RJ-45 (10/100Base-TX) recommended for re-ordering
J4106A (*)	Hewlett Packard	Ethernet/802.3, RJ-45 (10Base-T(
J4105A (*)	Hewlett Packard	Token Ring/802.5, DB9, RJ-45 (10Base-T)
J4100A (*)	Hewlett Packard	Fast Ethernet, Ethernet/802.3, RJ-45 (10/100Base-TX) + BNC (10Base2)

NOTE

These cards (*) may be no longer orderable. Minimum firmware of these Hewlett Packard JetDirect cards is A.05.05.

9 **Configuring the Preparative Pump Optional Interface Boards**

Table 24 Recommended LAN cables

Cross-over network cable (shielded, 3 m long), (for point to point connection)	5023-0203
Twisted pair network cable (shielded, 7 m long) (for hub connections)	5023-0202

Interfaces

Analog Signal Output

The analog output connector(s) provide an analog signal output (pressure signal). The analogue data are digitalized by an A/D-converter and can then be distributed to a PC, which is running with a non-Agilent operating system that does not communicate via GPIB.

For details refer to the description of the main board of the module.

GPIB Interface

The GPIB connector serves as the default interface between an Agilent 1260 Infinity module and the Agilent Control Software.

The GPIB connector is used to connect the module with a computer. The address and control switches next to the GPIB connector determine the GPIB address of your module. The switches are preset to a default address and recognized by the operating software from Agilent Technologies.

CAN Interface

The CAN connectors serve as the interface between the Agilent 1260 Infinity modules themselves. All modules in the Stack must be interconnected. It is a 2 wire serial bus system supporting high speed data communication and real-time requirements.

9 Configuring the Preparative Pump Interfaces

APG Remote Interface

The APG Remote connector serves as the interface between the Agilent 1260 Infinity and other Agilent (APG remote compatible) products. It may be used in combination with other analytical instruments from Agilent Technologies if you want to use features as common shut down, prepare, and so on.

Remote control allows easy connection between single instruments or systems to ensure coordinated analysis with simple coupling requirements.

The subminiature D connector is used. The module provides one remote connector which is inputs/outputs (wired-or technique).

To provide maximum safety within a distributed analysis system, one line is dedicated to SHUT DOWN the system's critical parts in case any module detects a serious problem. To detect whether all participating modules are switched on or properly powered, one line is defined to summarize the POWER ON state of all connected modules. Control of analysis is maintained by signal readiness READY for next analysis, followed by START of run and optional STOP of run triggered on the respective lines. In addition PREPARE and START REQUEST may be issued. The signal level are defined as:

- standard TTL levels (0 V is logic true, + 5 V is false)
- fan-out is 10,
- input load is 2.2 kOhm against + 5 V, and
- output are open collector type, inputs/outputs (wired-or technique).

Pin	Signal	Description	
1	DGND	Digital ground	
2	PREPARE	(L) Request to prepare for analysis (for example, calibration, detector lamp on). Receiver is any module performing preanalysis activities.	
3	START	(L) Request to start run / timetable. Receiver is any module performing run-time controlled activities.	
4	SHUT DOWN	(L) System has serious problem (for example, leak: stops pump). Receiver is any module capable to reduce safety risk.	
5		Not used	
6	POWER ON	(H) All modules connected to system are switched on. Receiver is any module relying on operation of others.	
7	READY	(H) System is ready for next analysis. Receiver is any sequence controller.	
8	STOP	(L) Request to reach system ready state as soon as possible (for example, stop run, abort or finish and stop injection). Receiver is any module performing run-time controlled activities.	
9	START REQUEST	(L) Request to start injection cycle (for example, by start key on any module). Receiver is the autosampler.	

 Table 25
 Remote Signal Distribution

9 Configuring the Preparative Pump Interfaces

RS-232C

The RS-232C connector is used to control the instrument from a computer through RS-232C connection, using the appropriate software. The RS-232C interface can be used for controlling the module with PCs running non-Agilent Control Software. Most (but not all) of the Control Software products of other manufacturers communicate via this RS-232C interface. If in such a scenario the RS-232C interface cannot be used, the analog output connector can be used instead, in which case an additional handheld controller (connected via the CAN Connector) must be used.

The RS-232C connector can be configured with the configuration switch module next to the GPIB connector. The RS-232C is designed as DCE (data communication equipment) with a 9-pin male SUB-D type connector. The pins are defined as:

Pin	Direction	Function
1	In	DCD
2	In	RxD
3	Out	TxD
4	Out	DTR
5		Ground
6	In	DSR
7	Out	RTS
8	In	CTS
9	In	RI

 Table 26
 RS-232C Connection Table (continued)

Main Power Supply Assembly

The main power supply comprises a closed assembly (no on-site repair possibility).

The power supply provides all DC voltages used in the module except for the voltages supplied by the lamp power supply to the deuterium and tungsten lamps in the detectors. The line voltage can vary in a range from 100 - 240 volts AC $\pm 10\%$ and needs no manual setting.

Figure 38 Main Power Supply (MPS) Blockdiagram

No accessible hardware fuse is needed because the main power supply is safe against any short circuits or overload conditions on the output lines. When overload conditions occur, the power supply turns off all output voltages. Turning the line power off and on again resets the power supply to normal operation if the cause of the overload condition has been removed. An over-temperature sensor in the main power supply is used to turn OFF output voltages if the temperature exceeds the acceptable limit (for example, if the cooling fan of the instrument fails). To reset the main power supply to normal operating conditions, turn the instrument OFF, wait until it is approximately at ambient temperature and turn the instrument on again.

The following table gives the specifications of the main power supply.

Maximum power	130 W	Continuous output
Line input	100 – 240 volts AC ± 10%, line frequency of 50/60 Hz	Wide ranging
Output 1	+ 24 V / 4.5 A (maximum)	Total power consumption of + 24 V
Output 2	+ 36 V / 2.5 A (maximum)	and + 36 V must not exceed 107 W.
Output 3	+ 5 V / 3 A	
Output 4	+ 15 V / 0.3 A	
Output 5	- 15 V / 0.3 A	

 Table 27
 Main Power Supply Specifications

9 Configuring the Preparative Pump

Main Power Supply Assembly

10 Appendix

General Safety Information 168 The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC) 172 Lithium Batteries Information 173 Radio Interference 174 Sound Emission 175 Solvent Information 176 Agilent Technologies on Internet 178

General Safety Information

General Safety Information

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

WARNING

Ensure the proper usage of the equipment.

The protection provided by the equipment may be impaired.

The operator of this instrument is advised to use the equipment in a manner as specified in this manual.

Safety Standards

This is a Safety Class I instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards.

Operation

Before applying power, comply with the installation section. Additionally the following must be observed.

Do not remove instrument covers when operating. Before the instrument is switched on, all protective earth terminals, extension cords, auto-transformers, and devices connected to it must be connected to a protective earth via a ground socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in serious personal injury. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any intended operation.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, and so on) are used for replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

Some adjustments described in the manual, are made with power supplied to the instrument, and protective covers removed. Energy available at many points may, if contacted, result in personal injury.

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided whenever possible. When inevitable, this has to be carried out by a skilled person who is aware of the hazard involved. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present. Do not replace components with power cable connected.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

Do not install substitute parts or make any unauthorized modification to the instrument.

Capacitors inside the instrument may still be charged, even though the instrument has been disconnected from its source of supply. Dangerous voltages, capable of causing serious personal injury, are present in this instrument. Use extreme caution when handling, testing and adjusting.

10 Appendix

General Safety Information

When working with solvents please observe appropriate safety procedures (e.g. goggles, safety gloves and protective clothing) as described in the material handling and safety data sheet by the solvent vendor, especially when toxic or hazardous solvents are used.

Safety Symbols

Table 28 Safety Symbols

Symbol	Description
\triangle	The apparatus is marked with this symbol when the user should refer to the instruction manual in order to protect risk of harm to the operator and to protect the apparatus against damage.
4	Indicates dangerous voltages.
	Indicates a protected ground terminal.
	Indicates eye damage may result from directly viewing the light produced by the deuterium lamp used in this product.
<u>k</u>	The apparatus is marked with this symbol when hot surfaces are available and the user should not touch it when heated up.

WARNING

A WARNING

alerts you to situations that could cause physical injury or death.

→ Do not proceed beyond a warning until you have fully understood and met the indicated conditions.

CAUTION

A CAUTION

alerts you to situations that could cause loss of data, or damage of equipment.

→ Do not proceed beyond a caution until you have fully understood and met the indicated conditions.

10 Appendix

The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC)

The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC)

Abstract

The Waste Electrical and Electronic Equipment (WEEE) Directive (2002/96/EC), adopted by EU Commission on 13 February 2003, is introducing producer responsibility on all electric and electronic appliances starting with 13 August 2005.

NOTE

This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category:

With reference to the equipment types in the WEEE Directive Annex I, this product is classed as a "Monitoring and Control Instrumentation" product.

NOTE

Do not dispose off in domestic household waste

To return unwanted products, contact your local Agilent office, or see www.agilent.com for more information.

Lithium Batteries Information

WARNING

Lithium batteries may not be disposed-off into the domestic waste. Transportation of discharged Lithium batteries through carriers regulated by IATA/ICAO, ADR, RID, IMDG is not allowed.

Danger of explosion if battery is incorrectly replaced.

- Discharged Lithium batteries shall be disposed off locally according to national waste disposal regulations for batteries.
- → Replace only with the same or equivalent type recommended by the equipment manufacturer.

Lithiumbatteri - Eksplosionsfare ved fejlagtig håndtering. Udskiftning må kun ske med batteri af samme fabrikat og type.

→ Lever det brugte batteri tilbage til leverandøren.

WARNING

WARNING

Lithiumbatteri - Eksplosionsfare.

Ved udskiftning benyttes kun batteri som anbefalt av apparatfabrikanten.

→ Brukt batteri returneres appararleverandoren.

NOTE

Bij dit apparaat zijn batterijen geleverd. Wanneer deze leeg zijn, moet u ze niet weggooien maar inleveren als KCA.

10 Appendix Radio Interference

Radio Interference

Cables supplied by Agilent Technoligies are screened to provide opitimized protection against radio interference. All cables are in compliance with safety or EMC regulations.

Test and Measurement

If test and measurement equipment is operated with unscreened cables, or used for measurements on open set-ups, the user has to assure that under operating conditions the radio interference limits are still met within the premises.

Sound Emission

Manufacturer's Declaration

This statement is provided to comply with the requirements of the German Sound Emission Directive of 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB.

- Sound Pressure Lp < 70 dB (A)
- At Operator Position
- Normal Operation
- According to ISO 7779:1988/EN 27779/1991 (Type Test)

Solvent Information

Flow Cell

To protect optimal functionality of your flow-cell:

- Avoid the use of alkaline solutions (pH > 9.5) which can attack quartz and thus impair the optical properties of the flow cell.
- If the flow cell is transported while temperatures are below 5 degree C, it must be assured that the cell is filled with alcohol.
- Aqueous solvents in the flow cell can built up algae. Therefore do not leave aqueous solvents sitting in the flow cell. Add a small % of organic solvents (e.g. acetonitrile or methanol ~5%).

Use of Solvents

Observe the following recommendations on the use of solvents.

- Brown glass ware can avoid growth of algae.
- Small particles can permanently block capillaries and valves. Therefore always filter solvents through 0.4 μm filters.
- Avoid the use of the following steel-corrosive solvents:
 - Solutions of alkali halides and their respective acids (for example, lithium iodide, potassium chloride, and so on),
 - High concentrations of inorganic acids like sulfuric acid and nitric acid, especially at higher temperatures (if your chromatography method allows, replace by phosphoric acid or phosphate buffer which are less corrosive against stainless steel),
 - Halogenated solvents or mixtures which form radicals and/or acids, for example:

 $2 \text{CHCl}_3 + \text{O}_2 \rightarrow 2 \text{COCl}_2 + 2 \text{HCl}$

This reaction, in which stainless steel probably acts as a catalyst, occurs quickly with dried chloroform if the drying process removes the stabilizing alcohol,

- Chromatographic grade ethers, which can contain peroxides (for example, THF, dioxane, di-isopropylether) such ethers should be filtered through dry aluminium oxide which adsorbs the peroxides,
- Solvents containing strong complexing agents (e.g. EDTA),
- Mixtures of carbon tetrachloride with 2-propanol or THF.

10 Appendix

Agilent Technologies on Internet

Agilent Technologies on Internet

For the latest information on products and services visit our worldwide web site on the Internet at:

http://www.agilent.com

Select Products/Chemical Analysis

It will provide also the latest firmware of the Agilent 1260 Infinity modules for download.

Index

A

adapter 43, 46 additional interface and control cables 38 Agilent Diagnostic software 70 Agilent Lab Advisor software 70 Agilent Lab Advisor 70 Agilent on internet 178 algae growth 54 algae 52, 176, 176 ambient operating temperature 27 ambient non-operating temperature 27 analog signal output 19 APG remote connector 160 APG remote connector 19 aqueous buffer solutions 66 ASIC - application-specific integrated circuit 150

B

back pressure 52 basis kit parts 145 basis kit 32 basis kit 30, 145 battery 151 safety information 173 BCD board external contacts 155, 155 BCD board 39, 131 bench space 26 blank nut 104 blank nut 96, 99 block diagram 152, 153 pump controller board 152, 153 blocking of filters 52 board HP JetDirect card 157 boards LAN card 157 bottle head assembly parts 140 buffer application 52 buffer solutions 66

C

cable connecting APG remote 35 connecting CAN 35 35 connecting GPIB connecting LAN 35 connecting the ChemStation 35 connecting the power 35 CAN interface 159 CAN bus 39 CAN-DC-out 39 CAN interface 18 cleaning 111 compensation sensor open 79 80 compensation sensor short composition cluster partner lost 90 compressibility compensation 28 compressibility compensation 10.67 condensation 26 connections. flow 45 connections

electrical 38 control and data evaluation 28 control software 41

D

damaged parts 30 delivery checklist preparative pump 31, 31 details preparative pump 10 Diagnostic software 70 dimensions 27 disassembling pump head assembly 114, 126

E

early maintenance feedback (EMF) 12 electrical connections descriptions of 14 electromagnetic proportioning valve 150 electronic fuses 151 electrostatic discharge (ESD) 109, 131 EMPV cleaning procedure 103 EMPV fuse blown 89 EMPV Missing 89 EMPV 114, 150 88 encoder not connected environment 24, 26 error messages EMPV fuse blown 89 error message 24V supply for external devices low 93 error messages

Index

no motor motion 91 no pump head 89 error condition 73 error messages compensation sensor open 79 compensation sensor short 80 composition cluster partner lost 90 EMPV Missing 89 encoder not connected 88 fan failed 80 82.82 ignition without cover index missing 87 leak sensor open 78 leak sensor short 79 78 leak motor direction 86 motor -driver fault 85 motor driver temperature too high 84 motor maximum power fault 86 position error 87 82 pressure above upper limit pressure below lower limit 83 pressure sensor not connected 83 pump off while analysis 87 remote timeout 76 seal wash current low 91 seal wash 92 shut-down 76 solvent counter zero 91 spurious index 88 timeout 75 wait for encoder position timed out 92 wait for pressure timed out 90 wait for volume timed out 90 wrong data from pressure sensor 84 exchanging EMPV 114 filter cup 114, 120 filter plate 114, 122

filter 114, 114 120. 122 filters inlet valve 117 inlet valve 114 interface board 131 outlet valve 117 outlet valve 114 pistons 114, 126 plungers 114, 126 purge valve 114 seal wash pump cartridge 125 seal wash pump cassette 114 seals 114, 126 valves 114, 114, 117 external contacts BCD board 155, 155

F

fan drive 151 fan failed 80 features GLP 28 instrument layout 12 safety and maintenace 28 filter cup 114, 120 filter plate 114, 122 filters 120, 122 firmware updates 132 upgade/downgrade 132 first analysis 49 flow precision 28 flow range 28 flow cell 176 solvent information 176 flow connections gradient pump 45 isocratic pump 42 flow 42 frequency range 27

front cover 43 front view isocratic preparative pump 37 fuse 151 fuses on BCD board 155

G

GPIB interface 159 GPIB interface 18 gradient kit 30 grounding of solvent bottle 43 grounding metal bottles 42, 45

Η

hints for successful use 52 housing 28 HP JetDirect card 157 humidity 27 hydraulic path parts 142 hydraulic system 28, 28

L

index board 151 index missing 87 indicator, status 72 inlet valve 117 inlet valves 114 installation power cords 25 pump module 36 installing the pump 29 instrument status indicator 73 lamp 73 interconnection Diagram
Index

CSM board 154 interface board 39, 131 interface Agilent 1260 Infinity 16 19 analog signal output CAN 18, 159 GPIB 18, 159 remote 19, 160 RS-232C 162 RS-232 18 interfaces 152, 152 interface special 21 internet 178 isocratic preparative pump 37

L

laboratory bench 26 lamp, status 72 lamp 73 instrument status IAN communication interface board 157 leak sensor short 79 leak sensor open 78 leak test, evaluation 100 leak test 98 leak converter 150 leak test 71 leakage 43 leak 78 line frequency 27, 39 line voltage 27, 39 lithium batteries 173 logbook 75

Μ

main assemblies, overview 112

main board 13, 13, 150 maintenance procedures 11 maintenance replacing firmware 132 Materials in contact with mobile phase 10 message ignition without cover 82.82 metal bottles 42, 45 30 missing parts motor driver temperature too high 84 motor -driver fault 85 motor maximum power fault 86 motor direction 86 motor drive 150 MPS (main power supply) 164 MPS (main power supply) 13

Ν

no motor motion 91		
no pump head 89		
non-operating altitude 27		
non-operating temperature	27	
not-ready condition 73		

0

onboard battery 151 operating range 28 operating Altitude 27 operating temperature 27 organic solvents 66 outet valve 117 outlet valves 114 overview of parts 112 overview hydraulic path 9 preparative pump 8

Ρ

parts basis kit 145 bottle head assembly 140 damaged 30 hydraulic path 142 missing 30 pump head 138 solvent cabinet 140 performance specification 28 pH range 28 physical specifications 27 pistons 114, 126 plungers 52, 114, 126 position error 87 power supply indicator 72 power supply description 164 power switch 37 power consideration 24 power consumption 27, 39 power cords 25 power input 39 power supply description 13 wide-ranging capability 39 preparative pump main board (PPM) 150 preparative pump delivery checklist 31. 31 preparative pump connections 38 prerun condition 73 pressure above upper limit 82 83 pressure below lower limit pressure sensor not connected 83 pressure test 94 150 pressure converter 67 pressure pulsation

Index

pressure test 71 pressure 28 priming solvents 50 priming 49 pump head assembly 138 pump head ID module 151 pump head assembly 114, 126, 129 pump off while analysis 87 pump installing 29 unpacking 28 purge valve 114

R

radio interference 174 reassembling pump head assembly 129 pump head assembly 114 recommended pH range 28 REMOTE connector 39 remote timeout 76 remote interface 19, 160 signal distribution 161 removina pump head assembly 126 pump head assembly 114 repair procedures 114 repairing 114 inlet valve outlet valve 114 valves 114 repairs replacing firmware 132 results 97 pressure test RS-232 connector 39 **RS-232C** connection table 162 RS-232C interface 162

RS-232 interface 18 run mode 73 running the leak test 99 running the pressure test 96

S

safety class I 168 safety information lithium batteries 173 safety general information 168, 168 standards 27 symbols 171 schematics preparative pump 9 seal wash current low 91 seal wash function 66 seal wash pump cartridge 125 seal wash pump cassette 114 seal wash pump drive 151 seal wash tubings 44 seal wash 66 seal wash function 52 seal wash 92 seals 52, 114, 126 security lever 37 setable flow range 28 shipping containers 30 shut-down 76 simple repair procedures 114 simple repairs 108 site requirements 24 snap fastener 43, 46 solvent cabinet parts 140 solvent counter zero 91 solvent filters cleaning 116

solvent inlet filter 52 solvent cabinet 52 solvent filters prevent blocking 54 solvent information 52, 53, 176 solvents 176 special interface 21 specification 28 performance physical 27 spurious index 88 stack configuration 35 rear view 35 status indicators 72 supply for external devices low 93

Ţ

temperature sensor 78 timeout 75

U

unpacking the pump 28

V

valves 114, 114, 117 voltage range 27 voltage selector 39

W

wait for encoder position timed out 92
wait for pressure timed out 90
wait for volume timed out 90
weight 27
wide-ranging capability 39
wrench 1/4 inch 96, 99
wrong data from pressure sensor 84

Index

www.agilent.com

In This Book

This manual contains technical reference information about the Agilent 1260 Infinity Preparative Pump. The manual describes the following:

- introduction,
- requirements,
- installation,
- using the pump,
- optimizing performance,
- troubleshooting and diagnostics,
- maintenance
- parts and materials,
- identifying cables,
- configuring the pump,
- legal, safety and warranty information.

© Agilent Technologies 2006, 2007-2011

Printed in Germany 02/2011

G1361-90012

